【题目】如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.
(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,求线段PC的最大值;
(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;
(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+5x;(2)4;(3)存在,P(4﹣,2+3);(4)存在,P(4﹣,2+3)
【解析】
(1)由待定系数法将A(4,4),B(5,0)代入二次函数的解析式为y=ax2+bx即可;
(2)求出OA的解析式,将P,C的纵坐标用含m的代数式表示出来,再表示出PC的长度,用函数的思想即可求出其最大值;
(3)存在,如图,当射线OP平分∠AOy时,过点P作PM⊥y轴于点M,作PN⊥OA于点N,则PM=PN,证△ODC和△PCN是等腰直角三角形,可用含m的代数式分别表示出PM,PN的长度,解等式即可求出m的值,进一步写出点P的坐标;
(4)存在,当△PCO为等腰三角形时,只存在PC=OC一种情况,用含m的代数式表示出PC,OC的长,解方程即可求出m的值,进一步写出点P的坐标.
解:(1)∵二次函数的图象经过原点,
∴设二次函数的解析式为y=ax2+bx,
将A(4,4),B(5,0)代入,
得,
解得,a=﹣1,b=5,
∴y=﹣x2+5x;
(2)设直线OA的解析式为y=ax,
将A(4,4)代入,
得,a=1,
∴yOA=x,
∵PD⊥x轴,D(m,0),
∴P(m,﹣m2+5m),C(m,m),
∴PC=﹣m2+5m﹣m
=﹣m2+4m
=﹣(m﹣2)2+4,
根据二次函数的图象及性质可知,当m=2时,PC有最大值,其最大值为4;
(3)存在,理由如下:
如图,当射线OP平分∠AOy时,过点P作PM⊥y轴于点M,作PN⊥OA于点N,
则PM=PN,
∵点C在直线yOA=x上,
∴△ODC是等腰直角三角形,
∴∠OCD=∠PCN=45°,
∴△PCN是等腰直角三角形,
由(2)知,PC=﹣m2+4m,
∴PN=(﹣m2+4m)=﹣m2+2m,
∵P(m,﹣m2+5m),
∴PM=m,
∵PM=PN,
∴m=﹣m2+2m,
解得,m1=0(舍去),m2=4﹣,
∴P(4﹣,2+3);
(4)存在,理由如下:
∵∠PCO=180°﹣∠OCD=135°,
∴当△PCO为等腰三角形时,只存在PC=OC一种情况,
由(2)知,PC=﹣m2+4m,OC=OD=m,
∴﹣m2+4m=m,
解得,m1=0(舍去),m2=4﹣,
∴当m=4﹣时,﹣m2+5m=2+3,
∴P(4﹣,2+3).
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有A、B两地,甲、乙两车均从A地匀速驶向B地,甲车比乙车早出发2小时,出发后,甲车出现了故障停下来维修,半小时后继续以原速向B地行驶.当乙车到达B地后立刻提速50%返回,在返回途中第二次与甲车相遇.下图表示甲乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系.则当乙车第二次与甲车相遇时,甲车距离B地_____千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由每个边长为1的小正方形组成的9×9的网格中,点A,B,C都在格点上,点B绕点C逆时针旋转90°后的对应点为M,已知点B的坐标为(0,﹣2)(坐标轴与网格线平行).
(1)直接写出:点C的坐标为 ,点M的坐标为 ;
(2)若平面内存在一点P,且P为△ACM的外心,直接写出点P的坐标是 ;
(3)CN平分∠BCM交y轴于点N,则N点坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(x-m)2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如下图,当m=2时,该抛物线与轴交于点C,顶点为D,求C、D 两点的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为( )
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB垂直弦CD于点E,点F在AB的延长线上,且∠BCF=∠A.
(1)求证:直线CF是⊙O的切线;
(2)若⊙O的半径为5,DB=4.求sin∠D的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为4,点B是圆上一动点,点A为⊙O内一定点,OA=4,将AB绕A点顺时针方向旋转120°到AC,以AB、BC为邻边作ABCD,对角线AC、BD交于E,则OE的最大值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com