【题目】如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:
(1)当t为何值时,P,Q两点同时停止运动;
(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;
(3)当△PQB为等腰三角形时,求t的值.
【答案】(1)t=5秒;(2)当t=4时,S的最大值是;(3)t=秒或t=4秒或t=秒.
【解析】
(1)∵当P点到达C点时,两点同时停止运动,∴求出BC长是关键,再除以1即得t值,作CE⊥AB于E,利用勾股定理求出BC的长,再除以速度即可;
(2)由已知条件,把△PQB的边QB用含t的代数式表示出来,作PF⊥QB于F,△PQB的高PF可由相似三角形对应线段成比例,也用含t的代数式表示出来,代入三角形的面积公式可得到一个二次函数,即可求出S的最大值;
(3)通过作辅助线构造直角三角形,由勾股定理用含t的代数式把△PQB三边表示出来,根据线段相等列出含t的方程式求解,即可求得结论.
解:(1)先求BC长,作CE⊥AB于E,
∵DC∥AB,DA⊥AB,∴四边形AECD是矩形,
∴AE=DC=5,CE=AD=4,
∴BE=8-5=3,∴BC==5,
∵P到C时,P、Q同时停止运动,
∴t=5÷1=5(秒),即t=5秒时,P,Q两点同时停止运动;
(2)由题意知,AQ=BP=t,∴QB=8﹣t,
作PF⊥QB于F,CE⊥AB于E,PF∥CE,
则△BPF~△BCE,∴
代入数值:,∴PF=,
∴S=QBPF=×(8﹣t)==﹣(t﹣4)2+(0<t≤5),
∵﹣<0,
∴S有最大值,当t=4时,S的最大值是;
(3)作PF⊥QB于F,CE⊥AB于E,
∵cos∠B==,同时cos∠B=,即=,
∴BF=t,∴QF=AB﹣AQ﹣BF=8-t-t=8﹣,
利用勾股定理:QP===,
又∵PB=t,QB=8-t
若△PQB为等腰三角形,则讨论三种情况:①PQ=PB;②PQ=BQ;③QB=BP.
建立含t的方程:①当PQ=PB时,即t=,
化简得:11-128t+320=0,解得t1=8,8>5,不合题意舍去,
∴PQ=PB时t=;
②当PQ=BQ时,即=8﹣t,化简得:,
解得:t1=0(舍去),t2=,∴PQ=BQ时t=;
③当QB=BP,即8﹣t=t,解得:t=4.
综上所述:当t=秒或t=4秒或t=秒时,△PQB为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD>AB,连接AC,将线段AC绕点A顺时针旋转90得到线段AE,平移线段AE得到线段DF(点A与点D对应,点E与点F对应),连接BF,分别交直线AD,AC于点G,M,连接EF.
(1) 依题意补全图形;
(2) 求证:EG⊥AD;
(3) 连接EC,交BF于点N,若AB=2,BC=4,设MB=a,NF=b,试比较与之间的大小关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=2,∠BCD=120°,求四边形AODE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初中学生对待学习的态度一直是教育工作者极为关注的一个问题.为此某市教育局对本市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:喜欢;B级:不太喜欢;C级:不喜欢),并将调查结果绘制成不完整的统计图(如图).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了_____名学生;
(2)将条形统计图补充完整;
(3)求出扇形统计图中级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计该市近名初中生中大约有多少名学生学习态度达标.(达标包括级和级)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是个和个,及下面不完整的统计表和统计图.
甲组男生训练前、后引体向上个数统计表(单位:个)
甲组 | 男生 | 男生 | 男生 | 男生 | 男生 | 男生 | 平均个数 | 众数 | 中位数 |
训练前 | |||||||||
训练后 |
根据以上信息,解答下列问题:
(1) , , ;
(2)甲组训练后引体向上的平均个数比训练前增长了 ;
(3)你认为哪组训练效果好?并提供一个支持你观点的理由;
(4)小华说他发现了一个错误:“乙组训练后引体向上个数不变的人数占该组人数的,所以乙组的平均个数不可能提高个这么多.”你同意他的观点吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 是直线上的两点,直线l1、l2的初始位置与直线重合将l1绕点顺时针以每秒10°的速度旋转,将l2绕点B逆时针以每秒5°的速度旋转,且两条直线从重合位置同时开始旋转,设旋转时间为秒(是正整数).当时,设的交点为;当时,设的交点为;当时设的交点为……那么当时, 相交所得的钝角是__________.当落在上方时, 的最小值是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=x2﹣x﹣3,与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C,过点A的直线与抛物线在第一象限的交点M的横坐标为,直线AM与y轴交于点D,连接BC、AC.
(1)求直线AD和BC的解折式;
(2)如图2,E为直线BC下方的抛物线上一点,当△BCE的面积最大时,一线段FG=4(点F在G的左侧)在直线AM上移动,顺次连接B、E、F、G四点构成四边形BEFG,请求出当四边形BEFG的周长最小时点F的坐标;
(3)如图3,将△DAC绕点D逆时针旋转角度α(0°<α<180°),记旋转中的三角形为△DA′C′,若直线A′C′分别与直线BC、y轴交于M、N,当△CMN是等腰三角形时,请直接写出CM的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.
(1)直接写出关于原点的中心对称图形各顶点坐标:________________________;
(2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com