精英家教网 > 初中数学 > 题目详情

【题目】下列说法正确的是(

A.“穿十条马路连遇十次红灯”是不可能事件

B.任意画一个三角形,其内角和是180°是必然事件

C.某彩票中奖概率为1%,那么买100张彩票一定会中奖

D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是

【答案】B

【解析】

直接利用随机事件的定义以及确定事件的定义分别分析得出答案.

A、“穿十条马路连遇十次红灯”是随机事件,错误;

B、三角形内角和是180°,所以任意画一个三角形,其内角和是180°,是必然事件,是正确的;

C、“彩票中奖概率为1%,那么买100张彩票不一定会中奖”是随机事件,故原选项错误;

D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是,故原选项错误.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点边的中点,分别以为斜边作,且

1)求证:

2)探究:的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:线段ABBC

求作:平行四边形ABCD

以下是甲、乙两同学的作业.

甲:

①以点C为圆心,AB长为半径作弧;

②以点A为圆心,BC长为半径作弧;

③两弧在BC上方交于点D,连接ADCD

四边形ABCD即为所求平行四边形.(如图1

乙:

①连接AC,作线段AC的垂直平分线,交AC于点M

②连接BM并延长,在延长线上取一点D,使MD=MB,连接ADCD

四边形ABCD即为所求平行四边形.(如图2

老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点E为矩形的边CD上的任意一点,点P为线段AE的中点,连接BP并延长与边AD交于点F,点M为边CD上的一点,且CMDE,连接FM

1)依题意补全图形;

2)求证∠DMF=∠ABF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.

(1)求(﹣2)⊙3的值;

(2)对于任意有理数m,n,请你重新定义一种运算“”,使得5⊕3=20,写出你定义的运算:m⊕n=   (用含m,n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线 过点A和B,与y轴交于点C.

(1)求点C的坐标,并画出抛物线的大致图象.

(2)点Q(8,m)在抛物线上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值.

(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动;设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,xn表示第n秒时机器人在数轴上的位置所对应的数;给出下列结论:(1x3=3;(2x5=1;(3x108x104;其中,正确结论的序号是(  )

A. 1)、(3B. 2)、(3C. 1)、(2D. 1)、(2)、(3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.

(1)求m,k的值;

(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.

查看答案和解析>>

同步练习册答案