精英家教网 > 初中数学 > 题目详情
19.如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.
(1)抛物线的对称轴是直线x=1,顶点A的坐标是(1,-4),
c=-3,BD与直线l的位置关系是平行;
(2)设抛物线与y轴交于点B,与x轴交于点C,D(点C在点D的左侧),试判断△ABD的形状;
(3)在直线l上是否存在一点P,使以点P,A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

分析 (1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标,根据二次函数的解析式求得B,D两点的坐标,于是求出直线BD的解析式,根据两直线斜率相等,得到结论;
(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状.
(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,即①AD∥PB,AD=PB、②AB∥PD,AB=PD,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标.

解答 解:(1)∵抛物线的对称轴是直线x=-$\frac{-2}{2}$=1,且顶点A在y=x-5上,
∴当x=1时,y=1-5=-4,
∴A(1,-4),
∴-4=12-2+c,
∴c=-3,
∴B(0,-3),
令y=0,即x2-2x-3=0,
∴x1=-1,x2=3,
∴D(3.0),
∴直线BD的解析式为:y=x-3,
∴BD∥直线l,
故答案为:x=1,(1,-4),(0,-3),平行;

(2)△ABD是直角三角形.
将A(1,-4)代入y=x2-2x+c,可得,1-2+c=-4,∴c=-3,
∴y=x2-2x-3,∴B(0,-3)
当y=0时,x2-2x-3=0,x1=-1,x2=3
∴C(-1,0),D(3,0),
BD2=OB2+OD2=18,AB2=(4-3)2+12=2,AD2=(3-1)2+42=20,
BD2+AB2=AD2
∴∠ABD=90°,即△ABD是直角三角形.

(3)存在.
由题意知:直线y=x-5交y轴于点E(0,-5),交x轴于点F(5,0)
∴OE=OF=5,
又∵OB=OD=3
∴△OEF与△OBD都是等腰直角三角形
∴BD∥l,即PA∥BD
则构成平行四边形只能是PADB或PABD,如图,
过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.
设P(x1,x1-5),则G(1,x1-5)
则PG=|1-x1|,AG=|5-x1-4|=|1-x1|
PA=BD=3$\sqrt{2}$,
由勾股定理得:
(1-x12+(1-x12=18,x12-2x1-8=0,x1=-2或4
∴P(-2,-7)或P(4,-1),
存在点P(-2,-7)或P(4,-1)使以点A、B、D、P为顶点的四边形是平行四边形.

点评 本题考查了二次函数解析式的确定、勾股定理、平行四边形的判定等基础知识,综合性较强;(3)题应注意分类讨论,以免漏解,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.若分式方程$\frac{2}{x-2}$=$\frac{a-x}{x-2}$有增根,则a的值是(  )
A.3B.0C.4D.2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.在平面直角坐标系中,半径为3的圆的圆心在(4,3),则这个圆与x轴的位置关系是(  )
A.相离B.相交C.相切D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.观察下列各式:
39×41=402-12
48×52=502-22
52×62=572-52
67×77=722-52
请你把发现的规律用字母表示出来:mn=$(\frac{n+m}{2})^{2}$-$(\frac{n-m}{2})^{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.从1997年底开始,某地区的沙漠面积几乎每年以相同的速度增长,据有关报道,到2003年底,该地区的沙漠面积已从2000年底的96.6万公顷扩展到97.2万公顷.
(1)可选用什么数学方法来描述该地区的沙漠面积的变化?
(2)如果该地区的沙漠化得不到治理,按相同的增长速度,那么到2020年底,该地区的沙漠面积将增加到多少万公顷?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某移动通讯公司开设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元;B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式的费用分别为yA和yB元.
(1)分别写出yA、yB与x之间的函数关系式;
(2)某人估计一个月内通话时间为300分钟,应选哪种移动通讯方式合算些?请书写计算过程;
(3)一个月内通话多少分种,两种移动通讯费用相同?请书写计算过程;
(4)李师傅用的是A卡,他计算了一下,若是用B卡,他本月的话费将会比现在多100元,请算一下本月李师傅实际的话费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,正三角形ABC的边长为6$\sqrt{3}$,当圆心O从点A出发,沿着线路AB-BC-CA运动,最后回到点A,⊙O与△ABC任意一边都不会相切时,称为“零相切”;在运动过程中,当⊙O只与△ABC一边相切时,称为“单次相切”;在运动过程中,当⊙O与△ABC两边都相切时,成为继“双次相切”.
(1)当⊙O的半径为$\sqrt{3}$.⊙O与△ABC首次“单次相切”时,OA的长为2;⊙O与△ABC第二次“单次相切”时,OA的长为6$\sqrt{3}$-2;在整个运动过程中,⊙O与△ABC“单次相切”的次数为4;⊙O在运动过程中有可能与△ABC“双次相切”吗?不可能.(填“可能”或“不可能”)
(2)若⊙O的半径为9,在整个运动过程中,⊙O与△ABC“单次相切”的次数为3.此时⊙O在运功过程中有可能与△ABC“双次相切”吗?不可能(填“可能”或“不可能”)
(3)依照(1)、(2)研究方法,请你直接写出,在运动过程中,半径r的范围及相应的相切情况的次数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)先化简,再求值:[(2x-3y)2-2x(2x+3y)]÷9y,其中x=3,y=-2.
(2)已知a+b=4,ab=3,求(a-b)2的值.
(3)如果(x2+px+8)(x2-3x+q)的乘积中不含x2与x3的项,求p、q的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:(-3)2-(1-$\frac{2}{5}$)÷(-$\frac{3}{4}$)×[4-(-42)]
(2)化简:(2x2+3x-$\frac{1}{2}$)-6(x-x2+$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案