精英家教网 > 初中数学 > 题目详情

【题目】如图,是⊙的直径,点D是弧AC的中点,∠COD60°.

⑴三角形AOD是等边三角形吗?请说明理由;

⑵求证:ODBC .

【答案】1)是,理由见解析(2)证明见解析.

【解析】

1)根据弧、圆心角、弦之间的关系定理得到∠AOD=∠COD60°,即可得到三角形AOD是等边三角形;

2)证明△COB为等边三角形,得到∠AOD=∠OBC60°,即可求解.

三角形AOD是等边三角形,证明如下:

∵点D是弧AC的中点,

∠AOD=∠COD60°

AO=DO,

∴三角形AOD是等边三角形;

2)∵的直径,∠AOD=∠COD60°

∠COB180°-∠AOD-∠COD= 60°

OC=OB

△COB为等边三角形,

∠AOD=∠OBC60°

OD∥BC .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是(  )

①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.

A. ①③B. ②③C. ③④D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠BAC90°,AB2AC4DBC边上一动点,GBC边上的一动点,GEAD分别交ACBA或其延长线于FE两点

1)如图1,当BC5BD时,求证:EGBC

2)如图2,当BDCD时,FG+EG是否发生变化?证明你的结论;

3)当BDCDFG2EF时,DG的值=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水库90天内的日捕捞量ykg)与时间第x(天)满足一次函数的关系,部分数据如表:

时间x(天)

1

3

6

10

日捕捞量(kg

198

194

188

180

1)求出yx之间的函数解析式;

2)水库前50天采用每天降低水位的办法减少捕捞成本,到达最低水位标准后,后40天水库维持最低水位进行捕捞.捕捞成本和时间的关系如下表:

时间x(天)

1≤x50

50≤x≤90

捕捞成本(元/kg

60-x

10

已知鲜鱼销售单价为每千克70元,假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.设销售该鲜鱼的当天收入w元(当天收入=日销售额-日捕捞成本),

①请写出wx之间的函数解析式,并求出90天内哪天收入最大?当天收入是多少?

②若当天收入不低于4800元,请直接写出x的取值范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.

(1)求该二次函数的解析式;

(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;

(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点Ay轴上一点,其坐标为(06),点Bx轴的正半轴上.点PQ均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PMx轴,QMy轴,则称△PQM为点PQ肩三角形.

1)若点B坐标为(40),且m2,则点PB肩三角形的面积为   

2)当点PQ肩三角形是等腰三角形时,求点B的坐标;

3)在(2)的条件下,作过OPB三点的抛物线yax2+bx+c

①若M点必为抛物线上一点,求点PQ肩三角形面积Sm之间的函数关系式,并写出自变量m的取值范围.

当点PQ肩三角形面积为3,且抛物线yax2+bx+c与点PQ肩三角形恰有两个交点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ABC90°,∠A30°AC的垂直平分线交AC边于点D,交AB边于点O,以点O为圆心,OB的长为半径作圆,与AB边交于点E

1)求证:AC是⊙O的切线;

2)若点P为⊙O上的动点(含点EB),连接BDBPDP

①当点P只在BE左侧半圆上时,如果BCDP,求∠BDP的度数;

②若QBP的中点,当BE4时,直接写出CQ长度的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是角平分钱,点E在AC上,且EAD=ADE.

1求证:DCE∽△BCA;

2若AB=3,AC=4.求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮计划寒假结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在一个不透明的袋子中装有编号为的三个球(除编号外都完全相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和为偶数,则按照小明的想法参加敬老服务活动;若两次数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

同步练习册答案