精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料,然后解决问题:和、差、倍、分等问题中有着广泛的应用,截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.

(1)如图1,在ABC中,若 AB=12,AC=8,求 BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使 DE=AD,再连接 BE,把AB、AC、2AD集中在ABE中.利用三角形三边的关系即可判断中线 AD的取值范围是_______.

问题解决:

(2)如图2,在四边形ABCD中,AB=AD,ABC+ADC=180°,E、F分别是边BC,CD上的两点,且EAF=BAD,求证:BE+DF=EF.

问题拓展:

(3)如图3,在ABC中,ACB=90°,CAB=60°,点DABC 外角平分线上一点,DEAC CA延长线于点E,F AC上一点,且DF=DB.

求证:AC﹣AE=AF.

【答案】(1)2<AD<10;(2)证明见解析;(3)证明见解析.

【解析】

(1)延长 AD 到点 E 使 DEAD,连接 BE,证明ADC≌△EDB,根据全等三角形的性质得到 BEAC,根据三角形三边关系计算;

(2)延长 CB G,使 BGDF,证明ABG≌△ADF,根据全等三角形的性质得到 AGAFGABFAD,证明AEG≌△AEF,根据全等三角形的性质证明;

(3) DHAB H,在 AB 上截取 BRAF,分别证明 RtDEFRtDHB

DAF≌△DRB,根据全等三角形的性质证明.

解:(1)延长 AD 到点E使 DE=AD,连接 BE,

ADC EDB中,

∴△ADC≌△EDB(SAS),

BE=AC=8,

AB﹣BE<AE<AB+BE,即21﹣8<2AD<12+8,

2<AD<10,

故答案为:2<AD<10;

(2)证明:延长 CB G,使 BG=DF,

∵∠ABC+ADC=180°,ABC+ABG=180°,

∴∠ADC=ABG,

ABG ADF 中,

∴△ABG≌△ADF(SAS),

AG=AF,GAB=FAD,

∵∠EAF= BAD,

∴∠FAD+BAE=GAB+BAE= BAD,

∴∠GAE=FAE,

AEG AEF 中,

∴△AEG≌△AEF(SAS),

EF=GE,

EF=BE+BG=BE+DF;

(3)证明:作 DHAB H,在 AB 上截取 BR=AF,

∵∠CAB=60°,ACB=90°,

∴∠ABC=30°,

AB=2AC,

∵点 D ABC 外角平分线上一点,DEAC,DHAB,

DE=DH,AH=AE,

RtDEF RtDHB 中,

RtDEFRtDHB(HL)

∴∠DFA=DBA,

DAF DRB 中,

∴△DAF≌△DRB(SAS)

DA=DR,

AH=HR=AE= AR,

AF=BR=AB﹣AR=2AC﹣2AE

AC﹣AE=AF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某房产开发公司对一幢住宅楼的标价是:基价2580/平方米,楼层差价如下表:

老王买了面积为80平方米的三楼.

1)问老王花了多少钱?

2)若他用同样多的钱去买六楼,请你帮老王算一算他可以多买多少平方米的房子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情景:
如图,在直角坐标系xOy中,点A、B为二次函数y=ax2(a>0)图象上的两点,且点A、B的横坐标分别为m、n(m>n>0),连接OA、AB、OB.设△AOB的面积为S时,解答下列问题:

(1)探究:当a=1时,

mn

m﹣n

S

m=3,n=1

3

2

m=5,n=2

10

3

当a=2时,

2mn

m﹣n

S

m=3,n=1

6

2

m=5,n=2

20

3


(2)归纳证明:对任意m、n(m>n>0),猜想S=(用a,m,n表示),并证明你的猜想.
(3)拓展应用:
若点A、B的横坐标分别为m、n(m>0>n),其它条件不变时,△AOB的面积S=(用a,m,n表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC=45°,CDAB于点D,BE平分∠ABC,且BEAC于点E,与CD相交于点F,H是边BC的中点,连接 DH BE相交于点 G,若GE=3,则BF=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AC=BC,ACB=90°,点 D,E分别在AB,BC上,且AD=BE,BD=AC,过EEFABF.

(1)求证:FED=CED;

(2) BF=,直接写出 CE的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,EF分别是ADAD延长线上的点,且DEDF,连接BFCE,下列说法:①△ABD 和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是(

A. ①② B. ③⑤ C. ①③④ D. ①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别,A:三个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩,现根据调查结果绘制了不完全的条形统计图和扇形统计图如下:
请结合图中信息解答下列问题:
(1)九(1)班现有学生人,在扇形统计图中表示“B类别”的扇形的圆心角的度数为
(2)请将条形统计图补充完整;
(3)若该校九年级有1000名学生,求计划“五一”小长假随父母到这三个景区游玩的学生多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长为 1,CDAB 于点 DE 为射线 CD 上一点,以BE为边在 BE 左侧作等边△BEF,则DF的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在哈市地铁一号线施工建设中,安排甲、乙两个工程队完成大连北路至新疆大街路段的铁轨铺设任务,该路段全长3600米.已知甲队每天铺设铁轨的米数是乙队每天铺设铁轨米数的1.5倍,并且甲、乙两队分别单独完成600米长度路段时,甲队比乙队少用10天.
(1)求甲、乙两个工程队每天各能铺设铁轨多少米?
(2)若甲队每天施工的费用为4万元,乙队每天施工的费用为3万元,要使甲、乙两队合作完成大连北路至新疆大街全长3600米的总费用不超过520万元,则至少应安排甲队施工多少天?

查看答案和解析>>

同步练习册答案