【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE求证:四边形AFCE为菱形;
(2)如图1,求AF的长;
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
【答案】(1)见解析;(2)AF=5cm;(3)
【解析】
(1)根据矩形的性质、平行线的性质和已知条件利用ASA证明△AOE≌△COF,可得OE=OF,进而可得四边形AFCE是平行四边形,然后由EF⊥AC即可证得结论;
(2)设AF=xcm,则易得CF=xcm,BF=(8-x)cm,然后在Rt△ABF中,由勾股定理建立关于x的方程,解方程即得结果;
(3)分为三种情况:第一、P在AF上,由P、Q两点的速度即可进行判断;第二、当P在BF上时,Q在CD或DE上,其中只有当Q在DE上时,以A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,用含t的代数式分别表示出AQ和CP,从而可得关于t的方程,解方程即得结果;第三情况:当P在AB上时,Q在DE或CE上,由P、Q两点的位置即可进行判断.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO,
∵EF是AC的垂直平分线,
∴OA=OC,
∵∠AOE=∠COF,
∴ΔAOE≌ΔCOF(ASA),
∴OE=OF,
∵OA=OC,
∴四边形AFCE是平行四边形,
∵EF⊥AC,
∴平行四边形AFCE是菱形;
(2)∵四边形AFCE是菱形,
∴AF=FC,
设AF=xcm,则CF=xcm,BF=(8-x)cm,
∵四边形ABCD是矩形,∴∠B=90°,
则在RtΔABF中,由勾股定理得:,
解得:x=5,即AF=5cm;
(3)分为三种情况:
第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,
∴Q只能在CD上,此时以A、P、C、Q四点为顶点的四边形不是平行四边形;
第二、当P在BF上时,Q在CD或DE上,其中只有当Q在DE上时,以A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,
∵AQ=8-(0.8t-4),CP=5+(t-5),
∴8-(0.8t-4)=5+(t-5),
解得:;
第三情况:当P在AB上时,Q在DE或CE上,此时以A、P、C、Q四点为顶点的四边形不是平行四边形;
综上所述,当时,以A、P、C、Q四点为顶点的四边形是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,AB OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.
(1)在t=3时,M点坐标 ,N点坐标 ;
(2)当t为何值时,四边形OAMN是矩形?
(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数填入它所属的集合内:将下列各数填入相应的括号内:
,,,,,,….
正数集合:{ …};
负数集合:{ …};
有理数集合:{ …};
无理数数集合:{ …}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,
以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以
算出图1中所有圆圈的个数为1+2+3+…+n=.
如果图中的圆圈共有13层,请解决下列问题:
(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左
边这个圆圈中的数是 ;
(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20,……,求
最底层最右边圆圈内的数是_______;
(3)求图4中所有圆圈中各数的绝对值之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位在疫情期间用元购进两种口罩个,购买种口罩与购买种口罩的费用相同,且种口罩的单价是种口罩单价的倍.
求两种口罩的单价各是多少元?
若计划用不超过元的资金再次购进两种口罩共个,已知两种口罩的进价不变,求种口罩最多能购买多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后,剩下的部分做成一个容积为90立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多4米,求矩形铁皮的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A,B,C为数轴上的三点,如果点C在点A,B之间,且到点A的距离是点C到点B的距离的3倍,那么我们就称点C是{A,B}的奇妙点.例如,如图①,点A表示的数为-3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇妙点;又如,表示-2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇妙点.
(知识运用)
如图②,M,N为数轴上的两点,点M所表示的数为-2,点N所表示的数为6.
(1)表示数_____的点是{M,N}的奇妙点;表示数______的点是{N,M}的奇妙点;
(2)若点P所表示的数为3,点P是{M,N}的奇妙点,则点M、N所表示的数可以是几?M=______,N=_____(写出一组即可)
(3)如图③,A,B为数轴上的两点,点A所表示的数为-10,点B所表示的数为50.现有一动点P从点A出发向右运动,点P运动到数轴上的什么位置时,P,A,B中恰有一个点为其余两点的奇妙点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=-x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.
(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;
(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com