精英家教网 > 初中数学 > 题目详情

【题目】如图O半径OC=6,D为半径OC上异于OC的点过点DABOCOABE在线段ABAECEP在线段EC的延长线上PBPE

(1)OD=2,求弦AB的长

(2)当点D在线段OC不含端点上移动时直线PBO有怎样的位置关系?请说明理由

(3)QO上的一个动点若点DOC中点时线段PQ的最小值为多少?请说明理由

【答案】(1);(2)PBO相切;(3)

【解析】

(1)连接OB,由OB=OC=6,OD=2,利用勾股定理可得BD的长,根据垂径定理可得答案;

(2)连接OB,OA,OE,先证AOE≌△COE得∠OAE=OCE,结合∠OBA=OAB知∠OCE=OBA,根据PB=PE知∠PBE=PEB,根据∠OCE+PEB=90°得∠OBA+PBE=90°,由切线的判定可得答案;

(3)先确定线段PQ的最小值时Q的位置:因为OQ为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,先求AE的长,从而得PB的长,最后利用勾股定理求OP的长,与半径的差就是PQ的最小值.

(1)如图1,连接OB,

OB=OC=6,OD=2,

BD=

AB=2BD=8

(2)如图2,连接OB,OA,OE,

OB=OA=OC,

∴∠OBA=OAB,

又∵OE=OE,AE=CE,

∴△AOE≌△COE(SSS),

∴∠OAE=OCE,

∴∠OCE=OBA,

PB=PE,

∴∠PBE=PEB,

ABCD,

∴∠OCE+PEB=90°,

∴∠OBA+PBE=90°,即∠PBO=90°,

OBPB,

OB是⊙O的半径,

PB与⊙O相切;

(3)线段PQ的最小值为2-6,理由如下:

DOC的中点,

OD=OC=OB,

RtOBD中,∠OBD=30°,

∴∠BOC=60°,

OB=OC,

∴△BOC是等边三角形,

Q为⊙O任意一点,

连接PQ、OQ,

因为OQ为半径,是定值4,

PQ+OQ的值最小时,PQ最小,

P、Q、O三点共线时,PQ最小,

QOP与⊙O的交点时,PQ最小,

A=COB=30°,

∴∠PEB=2A=60°,

ABP=90°-30°=60°,

∴△PBE是等边三角形,

RtOBD中,BD==3

AB=2BD=6

AE=x,则CE=x,ED=3-x,

RtCDE中,x2=32+(3-x)2

解得:x=2

BE=PB=6-2=4

RtOPB中,OP=

PQ=2-6,

则线段PQ的最小值是2-6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店分两次购进两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:

购进数量

购进所需费用(元)

第一次

30

40

3800

第二次

40

30

3200

1)求两种商品每件的进价分别是多少元?

2)商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进两种商品共1000件,且种商品的数量不少于种商品数量的4倍,设购进种商品件,获得的利润为元,

①请列出的函数关系式

②求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数ykx+bk≠0)与反比例函数ym≠0)的图象交于点A31),且过点B0,﹣2).

1)求反比例函数和一次函数的表达式;

2)如果点Px轴上的一点,且ABP的面积是3,求点P的坐标;

3)若P是坐标轴上一点,且满足PAOA,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分10分)如图,一次函数的图象与反比例函数为常数,且)的图象交于A1a)、B两点.

1)求反比例函数的表达式及点B的坐标;

2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EPAC交直线CD于点P,交直线AB于点F,ADP=ACB.

(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;

(2)若将D在线段AB上,点E在线段CB延长线上改为D在线段BA延长线上,点E在线段BC延长线上,其他条件不变(如图2).当∠ABC=90°,BAC=60°,AB=2时,求线段PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题10分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.

(1)求证:FE⊥AB;

(2)当EF=6,=时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx-3经过(-1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.

(1)写出点C的坐标并求出此抛物线的解析式;

(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;

(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,∠ABC=90°,ABBC.点D是线段AC上一点,连接BD.过点CCEBD于点E.点FAB垂直平分线上一点,连接BFEF

(1)若AD=4,tan∠BCE,求AB的长;

(2)当点FAC边上时,求证:∠FEC=45°.

查看答案和解析>>

同步练习册答案