【题目】如图1,已知抛物线过点.
(1)求抛物线的解析式及其顶点C的坐标;
(2)设点D是x轴上一点,当时,求点D的坐标;
(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,和的面积分别为,求的最大值.
【答案】(1),顶点C的坐标为-(-1,4);(2);(3)的最大值为.
【解析】
(1)利用待定系数法,将A,B的坐标代入即可求得二次函数的解析式;
(2)设抛物线对称轴与x轴交于点H,在中,可求得,推出,可证,利用相似三角形的性质可求出AD的长度,进一步可求出点D的坐标,由对称性可直接求出另一种情况;
(3)设代入,求出直线PA的解析式,求出点N的坐标,由,可推出,再用含a的代数式表示出来,最终可用函数的思想来求出其最大值.
解:(1)由题意把点代入,
得,,
解得,
∴此抛物线解析式为:,顶点C的坐标为
(2)∵抛物线顶点,
∴抛物线对称轴为直线,
设抛物线对称轴与x轴交于点H,
则,
在中,,
,
∴当时,
如图1,当点D在对称轴左侧时,
,
,
,
,
,
当点D在对称轴右侧时,点D关于直线的对称点D'的坐标为,
∴点D的坐标为或;
(3)设,
将代入,
得,,
解得,,
当时,,
如图2,
,
由二次函数的性质知,当时,有最大值,
和的面积分别为m、n,
的最大值为.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣4,0)和点B两点,与y轴交于点C,抛物线的对称轴是x=﹣1与x轴交于点D.
(1)求拋物线的函数表达式;
(2)若点P(m,n)为抛物线上一点,且﹣4<m<﹣1,过点P作PE∥x轴,交抛物线的对称轴x=﹣1于点E,作PF⊥x轴于点F,得到矩形PEDF,求矩形PEDF周长的最大值;
(3)点Q为抛物线对称轴x=﹣1上一点,是否存在点Q,使以点Q,B,C为顶点的三角形是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,、分别为轴、轴正半轴上的点,以、为边,在一象限内作矩形,且.将矩形翻折,使点与原点重合,折痕为,点的对应点落在第四象限,过点的反比例函数,其图象恰好过的中点,则点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着智能手机的普及率越来越高以及移动支付的快捷高效性,中国移动支付在世界处于领先水平.为了解人们平时最喜欢用哪种移动支付方式,因此在某步行街对行人进行随机抽样调查,以下是根据调查结果分别整理的不完整的统计表和统计图.
移动支付方式 | 支付宝 | 微信 | 其他 |
人数/人 |
| 200 | 75 |
请你根据上述统计表和统计图提供的信息.完成下列问题:
(1)在此次调查中,使用支付宝支付的人数;
(2)求表示微信支付的扇形所对的圆心角度数;
(3)某天该步行街人流量为10万人,其中30%的人购物并选择移动支付,请你依据此次调查获得的信息估计一下当天使用微信支付的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象与直线都经过点.
(1)求反比例函数和直线的解析式.
(2)将一次函数的图象沿轴向下平移个单位长度,使平移后的图象与反比例函数的图象有且只有一个交点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 xOy 中,菱形 ABOC 的顶点 O 在坐标原点,边 BO 在 x 轴的负半轴上,顶点 C的坐标为(﹣3,4),反比例函数 y 的图象与菱形对角线 AO 交于 D 点,连接 BD,当 BD⊥x 轴时,k的值是( )
A.B.C.﹣12D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设都是实数,且.我们规定:满足不等式的实数的所有值的全体叫做闭区间、表示为.对于一个函数,如果它的自变量与函数值满足:当时,有,我们就称此函数是闭区间上的“闭函数”.
(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间上的“闭函数”,求此一次函数的解析式;
(3)若实数满足.且,当二次函数是闭区间上的“闭函数”时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.
请根据以上信息,解答下列问题:
(1)这次被调查的学生共有多少人?并将条形统计图补充完整;
(2)在扇形统计图中,“体育”对应的圆心角的度数是?
(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com