| A. | B. | C. | D. |
分析 根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
如果一个图形绕某一点旋转一定的角度后能够与自身重合,那么这个图形就叫做旋转对称图形,这个点叫做旋转中心.对各图形分析后即可得解.
解答 解:A、不是旋转对称图形,也不是轴对称图形,故此选项错误;
B、不是旋转对称图形,不是轴对称图形,故此选项错误;
C、是旋转对称图形,也是轴对称图形,故此选项错误;
D、不是旋转对称图形,是轴对称图形,故此选项正确.
故选:D.
点评 本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;旋转对称图形是要寻找旋转中心,旋转一定角度后与原图重合.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a>-a>$\frac{1}{a}$ | B. | -a>a>$\frac{1}{a}$ | C. | a>$\frac{1}{a}$>-a | D. | $\frac{1}{a}$>a>-a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ($\sqrt{-2}$)2=-2 | B. | (-$\sqrt{2}$)2=-2 | C. | $\sqrt{(-2)^{2}}$=-2 | D. | [$\sqrt{(-2)^{2}}$]2=4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com