【题目】已知:如图,直线与x轴负半轴交于点A,与y轴正半轴交于点B,线段OA的长是方程的一个根,请解答下列问题:
求点B坐标;
双曲线与直线AB交于点C,且,求k的值;
在的条件下,点E在线段AB上,,直线轴,垂足为点,点M在直线l上,坐标平面内是否存在点N,使以C、E、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)点N的坐标为或或或.
【解析】
解方程得:,或,得出,,代入求出,即可得出;
在中,由勾股定理求出,过点C作轴于H,则,由平行线得出∽,得出,求出,,得出,,代入双曲线切线即可;
分两种情况:当CE为以C、E、M、N为顶点的矩形的一边时,由矩形的性质和相似三角形的判定与性质得出点N的坐标为或;
当CE为以C、E、M、N为顶点的矩形的对角线时,由矩形的性质和相似三角形的判定与性质得出点N的坐标为或.
解:解方程得:,或,
线段OA的长是方程的一个根,
,,
代入得:,
,
;
在中,,,
,
过点C作轴于H,如图1所示:
则,
∽,
,
即,
解得:,,
,
,
双曲线经过点C,
;
存在,理由如下:
分两种情况:
当CE为以C、E、M、N为顶点的矩形的一边时,过E作轴于G,作交直线l于M,如图2所示:
则,
∽,
,
,,
,
,
,
设直线EM的解析式为,
把点代入得:,
解得:,
直线EM的解析式为,
当时,,
,
,
,
点N的坐标为;
当CE为以C、E、M、N为顶点的矩形的一边时,同理得出满足条件的另一点N的坐标为;
当CE为以C、E、M、N为顶点的矩形的对角线时,作于G,于H,如图3所示:
则,,,
四边形EMCN是矩形,
,
由角的互余关系得:,
∽,
,
,
又,
,,
的坐标为,
,,
;
当CE为以C、E、M、N为顶点的矩形的对角线时,同理得出满足条件的另一点N的坐标为;
综上所述:存在以C、E、M、N为顶点的四边形是矩形,点N的坐标为或或或.
科目:初中数学 来源: 题型:
【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AM∥BN,∠A=52°,点P是射线AM上的动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由,若变化,请写出变化规律;
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程组或不等式(组)解应用题
某汽车专卖店销售,两种型号的新能源汽车.上周售出辆型车和辆型车,销售额为万元.本周已售出辆型车和辆型车,销售额为万元.
(1)求每辆型车和型车的售价各为多少万元?
(2)甲公司拟向该店购买,两种型号的新能源汽车共辆,且型号车不少于辆,购车费不少于万元,通过计算说明有哪几种购车方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.
(1)求一次函数的解析式;
(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;
(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是( )
A. ①③④ B. ②③④ C. ①②③ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF, BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com