精英家教网 > 初中数学 > 题目详情
13.计算:
(1)(-6)$÷\frac{3}{4}×$(-$\frac{1}{2}$)-(-$\frac{1}{6}$)×(-2$\frac{2}{3}$).
(2)3×$(-2)^{2}+(-6)÷(-\frac{1}{3})^{2}$.
(3)(-$\frac{3}{2}$)2×$\frac{8}{9}$-(-1$\frac{1}{3}$+$\frac{1}{6}$)×(-$\frac{3}{14}$).
(4)(3x2-2x-1)-3(2x2+x-2).
(5)3a2-[a2+2(a2-3a+1)-2a].

分析 (1)原式先计算乘除运算,再计算加减运算即可得到结果;
(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(3)原式先计算乘方运算,再计算加减运算即可得到结果;
(4)原式去括号合并即可得到结果;
(5)原式去括号合并即可得到结果.

解答 解:(1)原式=6×$\frac{4}{3}$×$\frac{1}{2}$-$\frac{1}{6}$×$\frac{8}{3}$=4-$\frac{4}{9}$=3$\frac{5}{9}$;
(2)原式=3×4-6×9=12-54=-42;
(3)原式=$\frac{9}{4}$×$\frac{8}{9}$-$\frac{2}{7}$+$\frac{1}{28}$=2-$\frac{1}{4}$=1$\frac{3}{4}$;
(4)原式=3x2-2x-1-6x2-3x+6=-3x2-5x+5;
(5)原式=3a2-a2-2a2+6a-2+2a=8a-2.

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.下列整式的运算中,结果正确的是(  )
A.3+x=3xB.y+y+y=y3C.6ab-ab=6D.3a3b-3ba3=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:($\frac{2}{x-2}-\frac{1}{x}$)$÷\frac{{x}^{2}-4}{{x}^{2}-2{x}^{2}}$,其中x=-$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=ax2+bx+c与y轴相交于点(0,$\frac{5}{2}$),与直线AB交于点A(-1,0),B(4,$\frac{5}{2}$),点D是抛物线A、B两点间部分上的一动点(不与点A、B重合),直线CD∥y轴,交直线AB于C,连接AD、BD.
(1)求该抛物线的表达式;
(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数表达式,并求当S取最大值时的点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.当x=-3时,代数式x-2x2的值是-21.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某工厂在一定的时间内加工一批零件,如果每天加工44个,则比规定任务少加工20个;如果每天加工50个零件,则可超额完成10个,求规定加工零件的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,P为等边三角形ABC中AB边上的动点,沿A→B的方向运动,到达点B时停止,过P作PD∥BC.设AP=x,△PDC的面积为y,则y关于x的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=CA,∠CAB=90°,F为BA延长线上一点,点E在线段AC上,
(1)请你补充一个条件,使△ABE≌△ACF,并证明;
(2)在(1)的条件下,判断CF与BE的位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知反比例函数y=$\frac{m}{x}$的图象与一次函数y=2x+b的图象相交于点A(1,4)和点B(n,-2).
(1)求反比例函数与一次函数关系式;
(2)当一次函数的值小于反比例函数的值时,写出x的取值范围.

查看答案和解析>>

同步练习册答案