精英家教网 > 初中数学 > 题目详情

【题目】一艘货轮由西向东航行,在处测得灯塔在它的北偏东60°方向,继续航行到达处,测得灯塔在正南方向10海里的处是港口,点在一条直线上,则这艘货轮由处到处航行的路程为__________海里(结果保留根号).

【答案】

【解析】

根据题意得:PC=10海里,∠PBC=90°-45°=45°,∠C=90°,∠PAC=30°,分别利用RtPACRtPBC求出ACBC,即可得到AB.

根据题意得:PC=10海里,∠PBC=90°-45°=45°,∠C=90°,∠PAC=30°,

RtPAC中,∠C=90°,∠PAC=30°,

AC=(海里)

RtPBC中,∠C=90°,∠PBC=45°,

BC=(海里),

AB=AC-BC=

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0)的图象如图所示,有下列结论:b24ac0abc0a+c0④9a+3b+c0.其中,正确的结论有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yaxh2+ka0)的图象是抛物线,定义一种变换,先作这条抛物线关于原点对称的抛物线y′,再将得到的对称抛物线y′向上平移mm0)个单位,得到新的抛物线ym,我们称ym叫做二次函数yaxh2+ka0)的m阶变换.

1)已知:二次函数y2x+22+1,它的顶点关于原点的对称点为   ,这个抛物线的2阶变换的表达式为   

2)若二次函数M6阶变换的关系式为y6′=(x12+5

二次函数M的函数表达式为   

若二次函数M的顶点为点A,与x轴相交的两个交点中左侧交点为点B,在抛物线y6′=(x12+5上是否存在点P,使点P与直线AB的距离最短,若存在,求出此时点P的坐标.

3)抛物线y=﹣3x26x+1的顶点为点A,与y轴交于点B,该抛物线的m阶变换的顶点为点C.若△ABC是以AB为腰的等腰三角形,请直按写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是“用三角板画圆的切线”的画图过程

如图1,已知圆上一点A,画过A点的圆的切线.

画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;

(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.

所以直线AD就是过点A的圆的切线.

请回答:该画图的依据是_______________________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a (a<0)经过点A-10),将点B04)向右平移5个单位长度,得到点C.

(1)求点C的坐标;

(2)求抛物线的对称轴;

(3)若抛物线与线段BC恰有一个公共点,结合函数图像,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,轴,点都在反比例函数上,点在反比例函数上,则______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,以□ABCD的顶点A为圆心,AB为半径作圆,分别交AD,BC于点E,F,延长BA交⊙A于G.

(1)求证:弧GE=弧EF

(2)若弧BF的度数为70°,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于A(﹣21),B1n)两点.

根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018531日是第31个“世界无烟日”,校学生会书记小明同学就戒烟方式的了解程度对本校九年级学生进行了一次随机问卷调查,下图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:

1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.

22018年该初中九年级共有学生400人,按此调查,可以估计2018年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?

3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有2名女生.校学生会要从选择“AD”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.

查看答案和解析>>

同步练习册答案