【题目】如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.
(1)求△AOB的面积;
(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.
【答案】(1)12;(2)(-14,0)或(2,0).
【解析】
(1)分别把x=0和y=0代入y=x+4,解之,得到点B和点A的坐标,根据三角形的面积公式,计算求值即可,
(2)根据“过B点作直线BC与x轴相交于点C,若△ABC的面积是16”,结合点B的坐标,求出线段AC的距离,即可得到答案.
解:(1)把x=0代入y=x+4得:
y=4,
即点B的坐标为:(0,4),
把y=0代入y=x+4得:
x+4=0,
解得:x=-6,
即点A的坐标为:(-6,0),
S△AOB==12,
即△AOB的面积为12,
(2)根据题意得:
点B到AC的距离为4,
S△ABC==16,
解得:AC=8,
即点C到点A的距离为8,
-6-8=-14,-6+8=2,
即点C的坐标为:(-14,0)或(2,0).
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片 ABCD 折叠,AE、EF 为折痕,点 C 落在 AD 边上的 G 处, 并且点 B 落在 EG 边的 H 处,若 AB=,∠BAE=30°,则 BC 边的长为( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC的三边长分别是a、b、c,且a=n2﹣1,b=2n,c=n2+1.
(1)判断三角形的形状;
(2)若以边b为直径的半圆面积为2π,求△ABC的面积;
(3)若以边a、b为直径的半圆面积分别为p、q,求以边c为直径的半圆面积.(用p、q表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(,),分别根据下列条件求出点P的坐标.
(1)点P在x轴上;
(2)点Q的坐标为(1,5),直线PQ∥y轴.
(3)点P到x轴、y轴的距离相等;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(m+3)x+3m=0.
(1)求证:无论m取什么实数值,该方程总有两个实数根.
(2)若该方程的两实根x1和x2是一个矩形两邻边的长且该矩形的对角线长为,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.
(1)在第n个图中,第一横行共_________ 块瓷砖,第一竖列共有_________ 块瓷砖;(均用含n的代数式表示)
(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式;
(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;
(4)黑瓷砖每块4元,白瓷砖每块3元,问题(3)中,共花多少元购买瓷砖;
(5)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,点是直线上的一点,连接,将线段绕点逆时针旋转,得到线段,连接.
(1)操作发现
如图1,当点在线段上时,请你直接写出与的位置关系为______;线段、、的数量关系为______;
(2)猜想论证
当点在直线上运动时,如图2,是点在射线上,如图3,是点在射线上,请你写出这两种情况下,线段、、的数量关系,并对图2的结论进行证明;
(3)拓展延伸
若,,请你直接写出的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com