【题目】如图,在△ABC中,AB=AC,∠BAC=90°,点D.E分别在AB.BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.
(1)求证:DE=EF.
(2)判断BD和CF的数量关系,并说明理由.
【答案】(1)详见解析;(2)BD=CF;详见解析.
【解析】
(1)只要证明EA=ED,EA=EF即可解决问题;
(2)结论:BD=CF.过点D作DG∥AC交BC于G,证明DGE≌FCE ,则DG=CF,再证出DG=BD即可得出结论.
(1)证明:∵∠BAC=90°,
∴∠DAE+∠EAF=90°,
∠ADE+∠F=90°,
∵∠DAE=∠ADE,
∴∠EAF=∠F,
∴EA=EF,
∵∠DAE=∠ADE,
∴EA=ED,
∴DE=EF;
(2)解:BD=CF.
理由:过点D作DG∥AC交BC于G,
∴∠EDG=∠F,
∵ED=EF,∠DEG=∠FEC,
∴DGE≌FCE,
∴DG=CF,
∵AB=AC,
∴∠ACB=∠B,
∵DG∥AC
∴∠ACB=∠DGB,
∴∠B=∠DGB,
∴BD=DG
∴BD=CF.
科目:初中数学 来源: 题型:
【题目】(本题满分8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程月1026千米,高铁平均时速是普快平均时速的2.5倍.
(1)求高铁列车的平均时速;
(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到
当日8:40从烟台到该是的高铁票,而且从该市火车站到会议地点最多需要1.5小时.试问在高铁列车准点到达的情况下他能在开会之前赶到吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的个数有( )
①垂线段最短;
②一对内错角的角平分线互相平行;
③平面内的n条直线最多有个交点;
④若,则;
⑤平行于同一直线的两条直线互相平行,垂直于同一直线的两条直线也互相平行.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:(不写作法,但必须保留作图痕迹)
(1)如图,已知点M.N和∠AOB,求作一点P,使P到点M.N的距离相等,且到∠AOB的两边的距离相等.
(2)要在河边修建一个水泵站,分别向张村.李庄送水(如图). 修在河边l什么地方,可使所用水管最短?试在图中确定水泵站的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:平面直角坐标系中,把点A(m,4)(m是实数)向右移动7个单位向下移动2个单位得到点B,点B向左移动3个单位向上移动6个单位得到点C,请解答:
(1) 点B,C的坐标是:B ,C ;
(2) 求△ABC的面积;
(3)若连接OC交线段AB于点D,且△ACD与△BCD的面积比不超过0.75时,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求点C到x轴的距离;
(2)分别求△ABC的三边长;
(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=x2与直线y2=-x+3相交于A,B两点.
(1)求这两个交点的坐标;
(2)点O的坐标是原点,求△AOB的面积;
(3)直接写出当y1<y2时,x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com