精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰ABC中,AB=AC,以AC为直径作⊙OBC于点D,过点DDEAB,垂足为E

1)求证:DE是⊙O的切线;

2)若DE= ,∠C=30°,求的长.

【答案】1)见解析;(2π

【解析】

1)连接OD,根据等边对等角得出∠ODC=C=B,进一步得出ODAB,再根据DE⊥AB即可得出答案;

2)连接AD,根据AC是直径,得到∠ADC90°,利用ABAC得到BDCD,解直角三角形求得BD,在RtABD中,解直角三角形求得AD,根据题意证得△AOD是等边三角形,即可ODAD,然后利用弧长公式求得即可.

1)证明:连接OD

∵OC=OD AB=AC

∴∠ODC=∠C=∠B

∴OD∥AB

∠ODE=∠DEB

∵DE⊥AB

DE⊥OD

∴DE⊙O的切线.

2)解:连接AD

∵AC⊙O的直径,

∴AD⊥BC

∵AB=AC

∴∠B=∠C=30°BD=CD

∴∠AOD=60°

∵DE=

∴BD=CD=2

∴OC=2

π

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等腰直角三角形ABC中,PBC上的一动点(不与BC重合),射线AP绕点A顺时针旋转,得到射线AQ,过点CCE垂直AB,交AB与点D,交射线AQ于点E,连接PE

1)依题意补全图形;

2)求的度数;

3)用等式表示线段PEDEAC三条线段之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是(

A.是表示甲离地的距离与时间关系的图象

B.乙的速度是

C.两人相遇时间在

D.当甲到达终点时乙距离终点还有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以点为圆心,适当的长为半径作弧,分别交于点,再分别以点为圆心,大于的长为半径作弧,两弧交于点,作射线,交于点.点在斜边上,以点为圆心,的长为半径的圆恰好经过点

1)判断直线的位置关系,并说明理由;

2)若,求的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2-4x+c(a≠0)与反比例函数y=的图象相交于B点,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2-4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.

(1)这次调查的市民人数为________人,m=________,n=________;

(2)补全条形统计图;

(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ORtABC直角边AC上一点,以OC为半径作⊙O与斜边AB相切于点D,交OA于点E,已知AC=3,则图中阴影部分的面积是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据市卫生防疫部门的要求,游泳池必须定期换水后才能对外开放.在换水时需要经“排水一清冼一灌水”的过程.某游泳馆从早上开始对游泳池进行换水,已知该游泳池的排水速度是灌水速度的倍,其中游泳池内剩余的水量与换水时间上之间的函数图象如图所示,根据图象解答下列问题:

1)该游泳池清洗需要    小时.

2)求排水过程中的之间的函数关系式,并写出自变量的取值范围.

3)若该游泳馆在换水结束分钟后才能对外开放,判断游泳爱好者小致能否在中午进入该游泳馆游泳,并说明理由.

查看答案和解析>>

同步练习册答案