【题目】如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示.
(1)求△ABC的面积;
(2)求y关于x的函数解析式;
(3)当△ABP的面积为5时,求x的值.
【答案】(1)10;(2)y=﹣x+;(3)当△ABP的面积为5时,x的值为2或11
【解析】
(1)根据函数的图象、结合图形求出AB、BC的值,根据三角形的面积公式得出△ABC的面积;
(2)根据图2信息,找到对应的点求出梯形ABCD各边的长,根据x的3个范围内在图1中求出y与x的关系;
(3)根据(2)中的关系式求出当y=5时,x的值是多少即可.
(1)∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,
函数图象上横轴表示点P运动的路程,x=4时,y开始不变,
则BC=4,
x=9时,接着变化,
则CD=9﹣4=5,
∴AB=5,BC=4,
∴△ABC的面积=×4×5=10.
(2)当0≤x≤时,y=AB×BP=×5×x=x,
即y=x;
当4≤x≤9时,点P在CD上,y=△ABC的面积=10,
即y=10;
当9≤x≤13时,点P在AD上,y=×5×(13﹣x)=﹣x+,
即y=﹣x+;
(3)当0≤x≤时,y=x=5,则x=2;
当9≤x≤13时,y=﹣x+=5,
解得:x=11;
综上所述,当△ABP的面积为5时,x的值为2或11.
科目:初中数学 来源: 题型:
【题目】某落地钟钟摆的摆长为米,来回摆动的最大夹角为,已知在钟摆的摆动过程中,摆锤离地面的最低高度为米,最大高度为米,则等于( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,、为对角线,点、、、分别为、、、边的中点,下列说法:
①当时,、、、四点共圆.②当时,、、、四点共圆.③当且时,、、、四点共圆.其中正确的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.
(1)试判断∠AED与∠C的数量关系,并说明理由;
(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)
(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;
(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AE⊥BC于点E,∠B=22.5°,AB的垂直平分线DN交BC于点D,交AB于点N,DF⊥AC于点F,交AE于点M.求证:
(1)AE=DE;
(2)EM=EC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,、、三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图①所示.这样不需求的高,而借用网格就能计算出它的面积.
(1)请你将的面积直接填写在横线上.__________________
(2)我们把上述求面积的方法叫做构图法.若三边的长分别为、、(),请利用图②的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.
(3) 若△ABC三边的长分别为、、 (m>0,n>0,且m≠n),请利用图③的长方形网格试运用构图法求出这三角形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com