【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2).
(1)求二次函数的解析式;
(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由;
(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由;
(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.
【答案】(1)y=﹣x2﹣x+2;(2)N(﹣1,2),△ANC的面积有最大值为1;(3)M的坐标为(﹣1,0)或(,0)或(,0);(4)点P的坐标为:(﹣1,2)或(, ).
【解析】试题分析:(1)利用交点式求二次函数的解析式;
(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;
(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;
(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;
②如图5,图3中的M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.
试题解析:
解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),
设二次函数的解析式为:y=a(x+2)(x﹣1),
把C(0,2)代入得:2=a(0+2)(0﹣1),
a=﹣1,
∴y=﹣(x+2)(x﹣1)=﹣x2﹣x+2,
∴二次函数的解析式为:y=﹣x2﹣x+2.
(2)如图1,过N作ND∥y轴,交AC于D,设N(n,﹣n2﹣n+2),
设直线AC的解析式为:y=kx+b,
把A(﹣2,0)、C(0,2)代入得: ,
解得: ,
∴直线AC的解析式为:y=x+2,
∴D(n,n+2),
∴ND=(﹣n2﹣n+2)﹣(n+2)=﹣n2﹣2n,
∴S△ANC=×2×[﹣n2﹣2n]=﹣n2﹣2n=﹣(n+1)2+1,
∴当n=﹣1时,△ANC的面积有最大值为1,此时N(﹣1,2),
(3)存在,分三种情况:
①如图2,当BC=CM1时,M1(﹣1,0).
②如图2,由勾股定理得:BC==,
以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,
此时,M2(1﹣,0),M3(1+,0).
③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,
设OM4=x,则CM4=BM4=x+1,
由勾股定理得:22+x2=(1+x)2,
解得:x=,
∵M4在x轴的负半轴上,
∴M4(﹣,0),
综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(﹣1,0)或(1±,0)或(﹣,0).
(4)存在两种情况:
①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,
此时,△CP1Q∽△BCO,
∴点P1与点C关于抛物线的对称轴对称,
∴P1(﹣1,2),
②如图5,由(3)知:当M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,
过P2作P2Q⊥BC,此时,△CP2Q∽△BCO,
易得直线CM的解析式为:y=x+2,
则,
解得:P2(﹣,﹣),
综上所述,点P的坐标为:(﹣1,2)或(﹣,﹣).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列说法不正确的是( )
A.与∠1互余的角只有∠2B.∠A与∠B互余
C.∠1=∠BD.若∠A=2∠1,则∠B=30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1)m= ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A. 504m2 B. m2 C. m2 D. 1009m2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On与直线l相切.设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费200元(含200元)以上,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分割线上时,则需重新转动转盘.
(1)某顾客正好消费220元,他转一次转盘,他获得九折、八折、七折优惠的概率分别是多少?
(2)某顾客消费中获得了转动一次转盘的机会,实际付费168元,请问他消费所购物品的原价应为多少元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com