精英家教网 > 初中数学 > 题目详情

【题目】作图题.

(1)如图,在图①所给的方格纸中,每个小正方形的边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格的顶点处),请按要求将图②中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等(分割线画成实线);

(2)如图③,在边长为1个单位长度的小正方形组成的正方形网格中,点都在小正方形的顶点上.

①在图中画出与关于直线成轴对称的;

②请在直线上找一点,使得的距离之和最小.

【答案】(1)详见解析;(2)详见解析;(3)详见解析.

【解析】

(1)根据图1中三角形的边长将图2中的图形分割即可;
(2)①作出各点关于直线l的对称点,再顺次连接各点即可;
②连接CB′交直线l于点P,则点P即为所求点.

(1) 如图②所示 .

(2) 如图③所示 .

(3) 的位置如图③所示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图和图,请根据相关信息,解答下列问题:

)图1中a的值为

)求统计的这组初赛成绩数据的平均数、众数和中位数;

)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小伟遇到这样一个问题:如图1,在ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边PBC,求AP的最大值.

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将ABP逆时针旋转60°得到A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).

请你回答:AP的最大值是   

参考小伟同学思考问题的方法,解决下列问题:

如图3,等腰RtABC.边AB=4,PABC内部一点,则AP+BP+CP的最小值是   .(结果可以不化简)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A,B为x轴上两点,C、D为y轴上的两点,经过点A,C,B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是(
A.abc<0
B.4ac﹣b2<0
C.a﹣b+c<0
D.2a+b<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

数学活动课上,老师出了一道作图问题:如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

小艾的作法如下:

(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.

(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.

(3)两弧分别交于点P和点M

(4)连接PM,与直线l交于点Q,直线PQ即为所求.

老师表扬了小艾的作法是对的.

请回答:小艾这样作图的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师提出如下问题:

尺规作图:作对角线等于已知线段的菱形.

已知:两条线段a、b.

求作:菱形AMBN,使得其对角线分别等于b2a.

尺规作图:作对角线等于已知线段的菱形.

已知:两条线段a、b.

求作:菱形AMBN,使得其对角线分别等于b2a.

小军的作法如下:

如图

(1)画一条线段AB等于b;

(2)分别以A、B为圆心,大于AB的长为半径,

在线段AB的上下各作两条弧,两弧相交于P、Q两点;

(3)作直线PQABO点;

(4)O点为圆心,线段a的长为半径作两条弧,交直线PQM、N两点,连接AM、AN、BM、BN.所以四边形AMBN就是所求的菱形.

如图

(1)画一条线段AB等于b;

(2)分别以A、B为圆心,大于AB的长为半径,

在线段AB的上下各作两条弧,两弧相交于P、Q两点;

(3)作直线PQABO点;

(4)O点为圆心,线段a的长为半径作两条弧,交直线PQM、N两点,连接AM、AN、BM、BN.所以四边形AMBN就是所求的菱形.

老师说:小军的作法正确.

该上面尺规作图作出菱形AMBN的依据是_______________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:(﹣2)2+( ﹣1)0 ﹣( 1
(2)简化( )÷

查看答案和解析>>

同步练习册答案