【题目】如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=2.
(1)求∠A的度数.
(2)求图中阴影部分的面积.
【答案】(1) ∠A=30°;(2)
【解析】
(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D
再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.
(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.
解:(1)连结OC
∵CD为⊙O的切线
∴OC⊥CD
∴∠OCD=90°
又∵OA=OC
∴∠A=∠ACO
又∵∠A=∠D
∴∠A=∠ACO=∠D
而∠A+∠ACD+∠D=180°﹣90°=90°
∴∠A=30°
(2)由(1)知:∠D=∠A=30°
∴∠COD=60°
又∵CD=2
∴OC=2
∴S阴影=.
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
(1)求证:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集是x<﹣2或0<x<1,其中正确的结论的序号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.
(I)如图1,若α=30°,求点B′的坐标;
(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在1、2、3、4、5这五个数中,先任意取一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b).求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,∠B=60°.若点D为AB的中点,P为边AB上一点,且∠CDP=90°,将∠CDP绕点D顺时针方向旋转(0°<<60°),角的两边分别与边AC、BC相交于M、N两点,则=_______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com