【题目】我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.
(1)求y与x的函数关系式,并写出x的取值范围.
(2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?
(3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.
【答案】(1)y=-25x+700(10≤x≤28);(2)该品种草莓定价为19元/千克时,每天销售获得的利润最大,为2025元;(3)能销售完这批草莓,理由见解析.
【解析】
(1)利用待定系数法求解可得结论;
(2)根据“总利润=单个利润×销售量”列出函数解析式,并配方成顶点式即可得出最大值;
(3)求出在(2)中情况下,即x=19时每天的销售量,据此求得30天的总销售量,比较即可得出答案.
(1)设y与x的函数关系式为y=kx+b(k≠0),把A(12,400),B(14,350)分别代入得,解得:,∴y与x的函数关系式为y=-25x+700,由题意知:,∴10≤x≤28;
(2)设每天的销售利润为w元,由题意知w=(x-10)(-25x+700)=-25x2+950x-7000 =-25(x-19)2+2025.
∵a=-25<0,∴当x=19时,w取最大值,为2025.
当该品种草莓定价为19元/千克时,每天销售获得的利润最大,为2025元.
(3)能销售完这批草莓.理由如下:
当x=19时,y=-25×19+700=225,225×30=6750>6000.
∴按照(2)中的方式进行销售,能销售完.
科目:初中数学 来源: 题型:
【题目】我市在全民健身活动中准备为青少年举行一次网球知识讲座,小明和妹妹都是网球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:通过做游戏决定谁去.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由妹妹从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同,则妹妹赢,否则小明赢.
⑴ 请用树状图或列表的方法表示游戏中所有可能出现的结果.
⑵ 这个游戏规则对游戏双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;
(2)若的长为π,求“回旋角”∠CPD的度数;
(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.
(1)求证:EM是⊙O的切线;
(2)若∠A=∠E,⊙O的半径为1,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在直线上,过点作轴交轴于点,以点为直角项点,为直角边在的右侧作等腰直角,再过点作,分别交直线和轴于,两点,以点为直角顶点,为直角边在的右侧作等腰直角,…,按此规律进行下去,则点的坐标为__________ (结果用含正整数的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点从(0,3)出发,沿轴以每秒1个单位长度的速度向下移动,同时动点从出发,沿轴以每秒2个单位长度的速度向右移动,当点移动到点时,点、同时停止移动.点在第一象限内,在、移动过程中,始终有,且.则在整个移动过程中,点移动的路径长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中,错误的是( )
A. 抛物线于x轴的一个交点坐标为(﹣2,0)
B. 抛物线与y轴的交点坐标为(0,6)
C. 抛物线的对称轴是直线x=0
D. 抛物线在对称轴左侧部分是上升的
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有四张背面完全相同的纸牌,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com