精英家教网 > 初中数学 > 题目详情

【题目】如图,中,,分别以为边作正方形,再作,使,点在边上,点在边上,点在边上,则的长为__________

【答案】

【解析】

首先证明△ABC≌△GFCSAS),利用全等三角形的性质可得:∠CGF=BAC=30°,在直角△ABC中,根据三角函数即可求得AC,进而由等边三角形的性质和正方形的性质及三角函数就可求得QR的长,在直角△QRP中运用三角函数即可得到RP、进而可求出PQ的长.

延长BAQR于点M

△ABC△GFC

△ABC△GFCSAS

∴∠CGF=CAB=30°

∴∠HGQ=180°-HGC-CGF =180°-90°-30°=60°

HAM=180°-HAC-CAB =180°-90°-30°=60°

∵∠R=ADE=90°

QRAD

BMQR

∴四边形RDAM是矩形

∴∠MHA+HAM=MHA+QHG=90°

QHG=60°

∴△QHG是等边三角形

在直角△HMA中,

∵四边形RDAM是矩形

MR=AD=AB=4

故填:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用一段长为的篱笆围成一个一边靠墙的矩形花圃,墙长.设长为,矩形的面积为

1)写出的函数关系式;当长为多少米时,所围成的花圃面积最大?最大值是多少?

2)当花圃的面积为时,长为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】车辆转弯时,能否顺利通过直角弯道的标准是:车辆是否可以行使到和路的边界夹角是45°的位置(如图1中②的位置),例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCDCDDECE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,则车辆就能通过.

(1)试说明长8m,宽3m的消防车不能通过该直角转弯;

(2)为了能使长8m,宽3m的消防车通过该弯道,可以将转弯处改为圆弧(分别是以O为圆心,以OMON为半径的弧),具体方案如图3,其中OMOM′,请你求出ON的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勘测队按实际需要构建了平面直角坐标系,并标示了ABC三地的坐标,数据如图(单位:km).笔直铁路经过AB两地.

1AB间的距离为______km

2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使DAC的距离相等,则CD间的距离为______km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D﹣12),与x轴的一个交点A在点(﹣30)和(﹣20)之间,其部分图象如图,则以下结论:①b2﹣4ac0②当x﹣1时,yx增大而减小;③a+b+c0④若方程ax2+bx+c﹣m=0没有实数根,则m2; 3a+c0.其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将坐标原点沿轴向左平移个单位长度得到点,过点轴的平行线交反比例函数的图象于点.

1)求反比例函数的解析式;

2)若是该反比例函数图象上的两点,且当时,,指出点各位于哪个象限?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.

(1)根据信息填表

产品种类

每天工人数(人)

每天产量(件)

每件产品可获利润(元)

15

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是(  )

A. 此抛物线的解析式是y=﹣x2+3.5

B. 篮圈中心的坐标是(4,3.05)

C. 此抛物线的顶点坐标是(3.5,0)

D. 篮球出手时离地面的高度是2m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2 0),则点C的坐标为(

A.(﹣1B.(﹣2C.1D.2

查看答案和解析>>

同步练习册答案