科目: 来源: 题型:
【题目】如图,在□ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE;⑥AF=CE这些结论中正确的是_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于( )
![]()
A.14 B.16 C.18 D.20
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC、BC边上运动,且保持AD=CE,连接DE,DF,EF,在此运动过程中,下列结论:(1)△DFE是等腰直角三角形;(2)DE长度的最小值为4;(3)四边形CDFE的面积保持不变;(4)△CDE面积的最大值是4.正确的结论是( )
![]()
A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (2)(3)(4)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:平面直角坐标系中,A(a,3)、B(b,6)、C(c,1),a、b、c都为实数,并且满足3b-5c=-2a-18,4b-c=3a+10
(1) 请直接用含a的代数式表示b和c
(2) 当实数a变化时,判断△ABC的面积是否发生变化?若不变,求其值;若变化,求其变化范围
(3) 当实数a变化时,若线段AB与y轴相交,线段OB与线段AC交于点P,且S△PAB>S△PBC,求实数a的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )
![]()
A. 2
B. 2
-1 C. 2.5 D. 2.3
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系
中,直线
经过点
且与直线
:
平行,直线
与
轴、
轴分别交于点B、C.
(1)求直线l1的表达式及其与
轴的交点D的坐标;
(2)判断四边形ABCD是什么四边形?并证明你的结论;
(3)若点E是直线AB上一点,平面内存在一点F,使得四边形CBEF是正方形,求点E的坐标,请直接写出答案.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠AEF=80°,且∠A=x°,∠C=y°,∠F=z°.若
+|y-80-m|+|z-40|=0(m为常数,且0<m<100)
(1) 求∠A、∠C的度数(用含m的代数式表示)
(2) 求证:AB∥CD
(3) 若∠A=40°,∠BAM=20°,∠EFM=10°,直线AM与直线FM交于点M,直接写出∠AMF的度数
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元
(1) 求甲、乙型号手机每部进价为多少元?
(2) 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案
(3) 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com