相关习题
 0  348853  348861  348867  348871  348877  348879  348883  348889  348891  348897  348903  348907  348909  348913  348919  348921  348927  348931  348933  348937  348939  348943  348945  348947  348948  348949  348951  348952  348953  348955  348957  348961  348963  348967  348969  348973  348979  348981  348987  348991  348993  348997  349003  349009  349011  349017  349021  349023  349029  349033  349039  349047  366461 

科目: 来源: 题型:

【题目】新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin , 且满足 ,则我们称函数y为“三角形函数”.
(1)若函数y=x+a为“三角形函数”,求a的取值范围;
(2)判断函数y=x2 x+1是否为“三角形函数”,并说明理由;
(3)已知函数y=x2﹣2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】解下列方程:

(1)4-m=-m; (2)56-8x=11+x;

(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地电话拨号上网有两种收费方式,用户可以任选其一:

(A)计时制,0.08/分;

(B)包月制,50/月(限一部个人住宅电话上网);

此外,每种上网方式都附加通信费0.02/分.

(1)某用户某月上网时间为x分钟,则该用户在A、B两种收费方式下应支付费用各多少元?

(2)如果一个月内上网200分钟和300分钟,按两种收费方式各需交费多少元?

(3)是否存在某一时间,会出现两种收费方式一样的情况?如果存在,请求出这时的上网时间.

查看答案和解析>>

科目: 来源: 题型:

【题目】重庆市中小学教育大力提倡“2+2”素质教育,在开展的几年来,取得了重大成果.小明对本学期全班50名同学所选择的活动项目进行了统计,根据收集的数据制作了下表:

1)请完善表格中的数据:

2)根据上述表格中的人数百分比,绘制合适的统计图.

查看答案和解析>>

科目: 来源: 题型:

【题目】省希望工程办公室收到社会各界人士捐款共1500万元.以此来资助贫困失学儿童.

(1)如果每名失学儿童可获得500元的资助,那么共可资助多少名失学儿童?用科学记数法表示结果.

(2)如果社会各界人士的捐款数平均为10/人,则需要多少人捐款才能获得这笔捐款?用科学记数法表示结果.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a与b满足,数轴上点A 和点B 所对应的数分别为a和b,点P 为数轴上一动点,其对应的数为

(1)求a,b的值.

(2)若点 P 到点 A、点 B 的距离相等,求点P对应的数.

(3)现在点 A、点 B 分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P 3 个单位长度/秒的速度同时从原点向左运动.当点 A 与点 B 之间的距离为2个单位长度时,求点 P 所对应的数是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=∠AOC.

(1)如图,求∠AOC的度数;

(2)如图,在∠AOD的内部作∠MON=90°,请直接写出∠AON∠COM之间的数量关系   

(3)在(2)的条件下,若OM∠BOC的角平分线,试说明∠AON=∠CON.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AD=BC,C=D=90°,下列结论中不成立的是( )

A. DAE=CBE B. CE=DE C. DAECBE不一定全等 D. 1=2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y= x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y= x2+bx+c交于第四象限的F点.

(1)求该抛物线解析式与F点坐标;
(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒 个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒

①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.
②若△PMH是等腰三角形,请直接写出此时t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°PDOAMOP的中点,DM=4cm,如果点COB上一个动点,则PC的最小值为(  )

A. 2B. C. 4D.

查看答案和解析>>

同步练习册答案