科目: 来源: 题型:
【题目】下列说法不正确的有( )
①一个三角形至少有2个锐角;②在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;③过n边形的一个顶点可作(n﹣3)条对角线;④n边形每增加一条边,则其内角和增加360°.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】感知:如图
,在菱形ABCD中,
,点E、F分别在边AB、AD上
若
,易知
≌
.
探究:如图
,在菱形ABCD中,
,点E、F分别在BA、AD的延长线上
若
,
与
是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图
,在ABCD中,
,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上
若
,
,
,求
的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为( )
![]()
A. S3<S1<S2 B. S1<S2<S3 C. S2<S1<S3 D. S1=S2=S3
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.![]()
(1)求经过A,B,C三点的抛物线的函数表达式;
(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;
(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为( )
![]()
A. 50° B. 65° C. 45° D. 60°
查看答案和解析>>
科目: 来源: 题型:
【题目】列式并计算
(1)求+1.2的相反数与﹣1.3的绝对值的和.
(2)4
与2
的和的相反数.
(3)巴黎和北京的时差是﹣7个小时,李伯伯于北京时间9月29号早上8:00搭乘飞往巴黎,飞行时间约11个小时,则李伯伯到达巴黎的时间是 .(填月日时)
查看答案和解析>>
科目: 来源: 题型:
【题目】把下列各数:
﹣3.1,3.1415,﹣
,+31,0.618,﹣
,0,﹣1,﹣(﹣3),填在相应的集合里
分数集合: ;
整数集合: ;
非负整数集合: ;
正有理数集合: .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.![]()
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3
时,求线段DH的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下列推理过程,将空白部分补充完整.
(1)如图1,∠ABC=∠A1B1C1,BD,B1D1分别是∠ABC,∠A1B1C1的角平分线,对∠DBC=∠D1B1C1进行说理.
理由:因为BD,B1D1分别是∠ABC,∠A1B1C1的角平分线
所以∠DBC= ,∠D1B1C1= (角平分线的定义)
又因为∠ABC=∠A1B1C1
所以
∠ABC=
∠A1B1C1
所以∠DBC=∠D1B1C1( )
![]()
(2)如图2,EF∥AD,∠1=∠2,∠B=40°,求∠CDG的度数.
因为EF∥AD,
所以∠2= ( )
又因为∠1=∠2 (已知)
所以∠1= (等量代换)
所以AB∥GD( )
所以∠B= ( )
因为∠B=40°(已知)
所以∠CDG= (等量代换)
(3)下面是“积的乘方的法则“的推导过程,在括号里写出每一步的依据.
因为(ab)n=
( )
=
( )
=anbn( )
所以(ab)n=anbn.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平移线段AB,使点A移动到点A1.
(1)画出平移后的线段A1B1,分别连接AA1,BB1.
(2)分别画出AC⊥A1B1于点C,AD⊥BB1于点D.
(3)AA1与BB1之间的距离,就是线段 的长度.
(4)线段AB平移的距离,就是线段 的长度.
(5)线段BD的长度,是点B到直线 的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com