科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).![]()
(1)求抛物线的解析式;
(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,函数
的图象
是第一、三象限的角平分线.
![]()
实验与探究:由图观察易知A(0,2)关于直线
的对称点A′的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线
的对称点B′、C′的位置,并写出它们的坐标: B′____________、C′___________;
归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线
的对称点
的坐标为____________;
运用与拓广:已知两点D(0,-3)、E(-1,-4),试在直线
上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】武警战士乘一冲锋舟从
地逆流而上,前往
地营救受困群众,途经
地时,由所携带的救生艇将
地受困群众运回
地,冲锋舟继续前进,到
地接到群众后立刻返回
地,途中曾与救生艇相遇.冲锋舟和救生艇距
地的距离
(千米)和冲锋舟出发后所用时间
(分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.
![]()
(1)请直接写出冲锋舟从
地到
地所用的时间.
(2)求水流的速度.
(3)冲锋舟将
地群众安全送到
地后,又立即去接应救生艇.已知救生艇与
地的距离
(千米)和冲锋舟出发后所用时间
(分)之间的函数关系式为
,假设群众上下船的时间不计,求冲锋舟在距离
地多远处与救生艇第二次相遇?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图
,直线
与双曲线
相交于点
、
,与x轴相交于C点.
求点A、B的坐标及直线
的解析式;
求
的面积;
观察第一象限的图象,直接写出不等式
的解集;
如图
,在x轴上是否存在点P,使得
的和最小?若存在,请说明理由并求出P点坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE. ![]()
(1)直接写出AE与BC的位置关系;
(2)求证:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半径长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:武术、D:跑步四种活动项目
为了解学生最喜欢哪一种活动项目
每人只选取一种
随机抽取了m名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:
![]()
______;
在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______;
请把图的条形统计图补充完整;
若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐。
(1)1个大餐厅和1个小餐厅分别可供多少名学生就餐?
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】一次函数y1=﹣
x﹣1与反比例函数y2=
的图象交于点A(﹣4,m). ![]()
(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;
(2)求出反比例函数的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:
污水处理器型号 | A型 | B型 |
处理污水能力(吨/月) | 240 | 180 |
已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.
(1)求每台A型、B型污水处理器的价格;
(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线L:y=-
x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式;
(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com