科目: 来源: 题型:
【题目】已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.![]()
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
(4)若抛物线顶点为D,点Q为直线AC上一动点,当△DOQ的周长最小时,求点Q的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB⊥BC,DC⊥BC,AB=1,DC=2,BC=3,点 P 是线段 BC 上一动点(不与点 B,C 重合),若△APD 是等腰三角形,则 CP 的长是_______________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为( )
![]()
A. 1 B. 1.5 C. 2.5 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题: ![]()
(1)①画出△ABC关于y轴对称的△A1B1C1;
②画出△ABC关于原点O对称的△A2B2C2;
(2)点C1的坐标是;点C2的坐标是;
(3)试判断:△A1B1C1与△A2B2C2是否关于x轴对称?(只需写出判断结果) .
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,直线AB交y轴于A点,交X轴于B点,A(0,6),B(6,0).点D是线段BO上一点,BN⊥AD交AD的延长线于点N.
(1)如图,若OM∥BN交AD于点M.点O作0G⊥BN,交BN的延长线于点G,求证:AM=BG
![]()
(2)如图,若∠ADO=67.5°,OM∥BN交AD于点M,交AB于点Q,求
的值.
![]()
(3)如图,若OC∥AB交BN的延长线于点C.请证明:∠CDN+2∠BDN=180°.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,对称轴x=﹣1,下列五个代数式ab、ac、a﹣b+c、b2﹣4ac、2a+b中,值大于0的个数为( ) ![]()
A.5
B.4
C.3
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com