相关习题
 0  349621  349629  349635  349639  349645  349647  349651  349657  349659  349665  349671  349675  349677  349681  349687  349689  349695  349699  349701  349705  349707  349711  349713  349715  349716  349717  349719  349720  349721  349723  349725  349729  349731  349735  349737  349741  349747  349749  349755  349759  349761  349765  349771  349777  349779  349785  349789  349791  349797  349801  349807  349815  366461 

科目: 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+c经过A(﹣1,0),B(0,2)两点,将△OAB绕点B逆时针旋转90°后得到△O′A′B′,点A落到点A′的位置.

(1)求抛物线对应的函数关系式;
(2)将抛物线沿y轴平移后经过点A′,求平移后所得抛物线对应的函数关系式;
(3)设(2)中平移后所得抛物线与y轴的交点为C,若点P在平移后的抛物线上,且满足△OCP的面积是△O′A′P面积的2倍,求点P的坐标;
(4)设(2)中平移后所得抛物线与y轴的交点为C,与x轴的交点为D,点M在x轴上,点N在平移后所得抛物线上,直接写出以点C,D,M,N为顶点的四边形是以CD为边的平行四边形时点N的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cm,BC=3cm,动点P从点A出发,沿AB以1cm/s的速度向终点B匀速运动,同时点Q从点B出发,沿B→C→D以1cm/s的速度向终点D匀速运动,当两个点中有一个到达终点后,另一个点也随之停止.连接PQ,设点P的运动时间为x(s),PQ2=y(cm2).

(1)当点Q在边CD上,且PQ=3时,求x的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)直接写出y随x增大而增大时自变量x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在一面靠墙的空地上用长24m的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x(m),面积S(m2).

(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;
(2)若墙的最大可用长度为8m,求围成花圃的最大面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】感知:如图①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点D,F分别在边AC,BC上,易证:AD=BF(不需要证明);

(1)探究:将图①的正方形CDEF绕点C顺时针旋转α(0°<α<90°),连接AD,BF,其他条件不变,如图②,求证:AD=BF;
(2)应用:若α=45°,CD= ,BE=1,如图③,则BF=

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,BC=4,BD平分∠ABC,过点AAD⊥BD于点D,过点DDE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为(  )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),点P是抛物线上一动点,连接BP,OP.

(1)求这条抛物线的解析式;
(2)若△BOP是以BO为底边的等腰三角形,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目: 来源: 题型:

【题目】如图ABCACB=90°,DAB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.

(1)试确定四边形ADCE的形状,并说明理由

(2)AB=16,AC=12,求四边形ADCE的面积.

(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

同步练习册答案