相关习题
 0  350447  350455  350461  350465  350471  350473  350477  350483  350485  350491  350497  350501  350503  350507  350513  350515  350521  350525  350527  350531  350533  350537  350539  350541  350542  350543  350545  350546  350547  350549  350551  350555  350557  350561  350563  350567  350573  350575  350581  350585  350587  350591  350597  350603  350605  350611  350615  350617  350623  350627  350633  350641  366461 

科目: 来源: 题型:

【题目】某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟100~109次的为中等;每分钟110~119次的为良好;每分钟120次及以上的为优秀。测试结果整理绘制成如下两幅不完整的统计图。请根据图中信息,解答下列各题:

(1)参加这次跳绳测试的共有人;
(2)补全条形统计图;
(3)在扇形统计图中,“中等”部分所对的圆心角的度数是
(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算出该校初二年级跳绳成绩为“优秀”的人数。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,山坡上有一颗树AB,树底部B点到山脚C点的距离BC为6 米,山坡的坡角为30°,小宇在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

查看答案和解析>>

科目: 来源: 题型:

【题目】王阿姨销售草莓,草莓成本价为每千克10元,她发现当销售单价为每千克至少10元,但不高于每千克20元时,销售量y(千克)与销售单价x(元)的函数图象如图所示:
(1)求y关于x的函数解析式,并写出它的定义域;
(2)当王阿姨销售草莓获得的利润为800元时,求草莓销售的单价.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.

(1)若∠BOD=70°,求∠AOM和∠CON的度数;

(2)若∠BON=50°,求∠AOM和∠CON的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】我省某工艺厂为全运会设计了一款成本为每件20元的工艺品,投放市场试销后发现每天的销售量y(件)是售价x(元/件)的一次函数。当售价为22元/件时,每天销售量为780件;当售价为25元/件时,每天销售量为750件。
(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)

查看答案和解析>>

科目: 来源: 题型:

【题目】观察下面算式,解答问题:

……

(1)请求出1 3 5 7 9 11的结果为

请求出1 3 5 7 9 29 的结果为

(2)若n 表示正整数请用含 n 的代数式表示1 3 5 7 9 (2n 1) (2n 1) 的值为

(3)请用上述规律计算: 41 43 45 77 79 的值(要求写出详细解答过程).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.

(1)B出发时与A相距   千米.

(2)B走了一段路后,自行车发生故障,进行修理,所用的时间是   小时.

(3)B出发后   小时与A相遇.

(4)求出A行走的路程S与时间t的函数关系式.

(5)若B的自行车不发生故障,保持出发时的速度前进,   小时与A相遇,相遇点离B的出发点   千米.在图中表示出这个相遇点C.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB、CD为 O的直径,弦AE//CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使 PED= C.

(1)求证:PE是 O的切线;
(2)求证:ED平分 BEP;
(3)若 O的半径为5,CF=2EF,求PD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】文山州某中学为普遍提高学生身体素质,开展每天“阳光体育一小时”活动,根据实际情况决定开设A、篮球;B、乒乓球;C、羽毛球;D、足球四种运动项目,为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,每名学生必须且只能选择最喜爱的一项运动项目,并将调查结果制作成如下两幅不完整的统计图,请结合图中的信息解答下列问题:

(1)这次被抽查的学生有人;请补全条形统计图;

(2)在统计图中,“乒乓球”对应扇形的圆心角是度;

(3)若该中学共有3600名学生,喜欢篮球的学生约有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是规格为8×8的正方形网格,请在所给的网格中按下列要求操作:

(1)请在网格中建立平面直角坐标系,使点A坐标为(﹣2,4),点B坐标为(﹣4,2);

(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则写出点C的坐标,写出ABC的周长(结果保留根号);

(3)画出ABC关于y轴的对称图形A1B1C1;并写出点A1、B1、C1的坐标.

查看答案和解析>>

同步练习册答案