相关习题
 0  351336  351344  351350  351354  351360  351362  351366  351372  351374  351380  351386  351390  351392  351396  351402  351404  351410  351414  351416  351420  351422  351426  351428  351430  351431  351432  351434  351435  351436  351438  351440  351444  351446  351450  351452  351456  351462  351464  351470  351474  351476  351480  351486  351492  351494  351500  351504  351506  351512  351516  351522  351530  366461 

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是G,且点G在边AD上,若EG⊥AC,AB=2,则FG的长为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1所示,在ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,BAC=90°.

(1)当点D在线段BC上时(不与点B重合),线段CFBD的数量关系与位置关系分别是什么?请给予证明.

(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AD是△ABC的中线,EF分别是ADAD延长线上的点,且DEDF,连接BFCE,下列说法:①△ABD 和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是(

A. ①② B. ③⑤ C. ①③④ D. ①④⑤

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2 , 再过点A2作x轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行去,点A2016的坐标为( )

A.(﹣22016 , 0)
B.(﹣22017 , 0)
C.(﹣21008 , 0)
D.(﹣21007 , 0)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣3,0),点 B y轴正半轴上一动点,点C、D x正半轴上.

(1)如图,若BAO=60°,BCO=40°,BD、CE ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____

(2)如图,ABD是等边三角形,以线段BC为边在第一象限内作等边BCQ,连接 QD并延长 y轴于点 P,当点 C运动到什么位置时满足 PD=DC?请求出点C的坐标;

(3)如图,以AB为边在AB的下方作等边ABP,点B y轴上运动时,求OP的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,抛物线y= x2经过点A(x1 , y1)、C(x2 , y2),其中x1、x2是方程x2﹣2x﹣8的两根,且x1<x2 , 过点A的直线l与抛物线只有一个公共点

(1)求A、C两点的坐标;
(2)求直线l的解析式;
(3)如图2,点B是线段AC上的动点,若过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,过点E作DC的平行线EF与直线AC相交于点F,求BF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】在正六边形ABCDEF中,N、M为边上的点,BM、AN相交于点P

(1)如图1,若点N在边BC上,点M在边DC上,BN=CM,求证:BPBM=BNBC;

(2)如图2,若N为边DC的中点,M在边ED上,AM∥BN,求 的值;

(3)如图3,若N、M分别为边BC、EF的中点,正六边形ABCDEF的边长为2,请直接写出AP的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下列材料,然后解决问题:和、差、倍、分等问题中有着广泛的应用,截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.

(1)如图1,在ABC中,若 AB=12,AC=8,求 BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使 DE=AD,再连接 BE,把AB、AC、2AD集中在ABE中.利用三角形三边的关系即可判断中线 AD的取值范围是_______.

问题解决:

(2)如图2,在四边形ABCD中,AB=AD,ABC+ADC=180°,E、F分别是边BC,CD上的两点,且EAF=BAD,求证:BE+DF=EF.

问题拓展:

(3)如图3,在ABC中,ACB=90°,CAB=60°,点DABC 外角平分线上一点,DEAC CA延长线于点E,F AC上一点,且DF=DB.

求证:AC﹣AE=AF.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于__________

查看答案和解析>>

科目: 来源: 题型:

【题目】两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,ABADBCDCACBD相交于点O,下列判断正确的有_____(填序号)

ACBDACBD互相平分;AC平分BCD④∠ABCADC90°筝形ABCD的面积为AC·BD.

查看答案和解析>>

同步练习册答案