相关习题
 0  351685  351693  351699  351703  351709  351711  351715  351721  351723  351729  351735  351739  351741  351745  351751  351753  351759  351763  351765  351769  351771  351775  351777  351779  351780  351781  351783  351784  351785  351787  351789  351793  351795  351799  351801  351805  351811  351813  351819  351823  351825  351829  351835  351841  351843  351849  351853  351855  351861  351865  351871  351879  366461 

科目: 来源: 题型:

【题目】如图,四边形ABCD中,BAD=∠BCD=90°AB=AD,若四边形ABCD的面积是24cm2,求AC的长

查看答案和解析>>

科目: 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.

(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;
(2)求△COD的面积;
(3)直接写出 k1x+b≥0 时自变量x的取值范围.
(4)动点P(0,m)在y轴上运动,当 |PCPD| 的值最大时,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】ABC中,其两个内角如下,则能判定ABC为等腰三角形的是(

A.A=40°,∠B=50°B.A=40°,∠B=60°

C.A=20°,∠B=80°D.A=40°,∠B=80°

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD为矩形,O为AC中点,过点O作AC的垂线分别交AD、BC于点E、F,连接AF、CE.

(1)求证:四边形AFCE是菱形.
(2)若AC=8,EF=6,求BF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则SBCE:SBDE等于(

A.2:5 B.14:25 C.16:25 D.4:21

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市计划经销一些特产,经销前,围绕“A:王高虎头鸡,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鸭蛋”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.
(1)请补全扇形统计图和条形统计图;
(2)若全市有110万市民,估计全市最喜欢“羊口咸蟹子”的市民约有多少万人?
(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到A的概率是多少?写出分析计算过程.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读与计算:请阅读以下材料,并完成相应的任务.

斐波那契(约11701250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用表示(其中,n≥1).这是用无理数表示有理数的一个范例.

任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.

1)求原计划每天生产的零件个数和规定的天数.

2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.2元,每天可多售出40斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

同步练习册答案