科目: 来源: 题型:
【题目】你能求(x一1)(x99+x98+x97+…+x+1)的值吗?
遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值.
(1)(x-1)(x+1) =_____________;
(2)(x—1)( x2+x+1) =_____________;
(3)(x-1)(x3+ x2+x+1) =____________;
…
由此我们可以得到:
(4)(x一1)( x99+x98+x97+…+x+1) =___________,
请你利用上面的结论,完成下列的计算:
(5)299+298+297+…+2+1;
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道:三角形的三条角平分线交于一点,这个点称为三角形的内心(三角形内切圆的圆心).现在规定:如果四边形的四个角的角平分线交于一点,我们把这个点也成为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)如图1,已知点O是四边形ABCD的内心,求证:AB+CD=AD+BC.![]()
(3)如图2,Rt△ABC中,∠C=90°.O是△ABC的内心.若直线DE截边AC,BC于点D,E,且O仍然是四边形ABED的内心.这样的直线DE可画多少条?请在图2中画出一条符合条件的直线DE,并简单说明作法.![]()
(4)问题(3)中,若AC=3,BC=4,满足条件的一条直线DE∥AB,求DE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】问题发现:数学兴趣小组在活动时,老师提出了这样一个问题:如图①,在Rt△ABC中,∠BAC=90°,BC=10,AD是BC边上的中线,求AD的长度.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,则AD=
AE
![]()
在△ADC和△EDB中
![]()
∴△ADC≌△EDB
∴∠DBE=∠DCA,BE=AC
∴BE∥AC
∴∠EBA+∠BAC=180°
∵∠BAC=90°
∴∠EBA=90°
在△EBA和△CAB中
![]()
∴△EBA≌△CAB
∴AE=BC
∵BC=10
∴AD=
AE=
BC=5
(1)若将上述问题中条件“BC=10”换成“BC=a”,其他条件不变,则可得AD= .
从上得到结论:直角三角形斜边上的中线,等于斜边的一半.
(感悟)解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形进而求解.
问题解决:(2)如图②,在四边形ABCD中,AD∥BC,∠D=90°,M是AB的中点.若CM=6.5,BC+CD+DA=17,求四边形ABCD的面积.
问题拓展:(3)如图③,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,∠DFE与∠AEF的度数满足数量关系:∠DFE=k∠AEF,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某机动车出发前油箱内有油
,行驶若干小时后,途中在加油站加油若干升.油箱中余油量
(
)与行驶时间
(
)之间的函数关系如图所示,根据图回答问题:
![]()
(1)机动车行驶
后加油,途中加油 升:
(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?
(3)如果加油站距目的地还有
,车速为
,要到达目的地,油箱中的油是否够用?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点A,C,D在⊙O上,过D作PF∥AC交⊙O于F,交AB于E,且∠BPF=∠ADC.![]()
(1)判断直线BP和⊙O的位置关系,并说明你的理由;
(2)当⊙O的半径为
,AC=2,BE=1时,求BP的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:![]()
(1)汽车行驶h后加油,中途加油L;
(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;
(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图(1),连接AF、CE.
①四边形AFCE是什么特殊四边形?说明理由;
②求AF的长;
(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③
(∠α+∠β);④
(∠α﹣∠β).正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线与BE的延长线相交于点F,连接CF.
(1)求证:四边形CFAD为平行四边形.
(2)若∠BAC=90°,AB=4,BD=
,请求出四边形CFAD的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线 CB 和射线 OA,CB//OA,点 B 在点 C 的右侧.且满足∠OCB=∠OAB=100°,连接线段 OB,点 E、F 在直线 CB 上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠BOE
(2)当点 E、F 在线段 CB 上时(如图 1),∠OEC 与∠OBA 的和是否是定值?若是,求出这个值;若不是,说明理由。
(3)如果平行移动 AB,点 E、F 在直线 CB 上的位置也随之发生变化.当点 E、F 在点 C 左侧时,∠OEC 和∠OBA 之间的数量关系是否发生变化?若不变,说明理由;若变化,求出他们之间的关系式.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com