科目: 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连结BM,MN.
(1)求证BM=MN;
(2)若∠BCN=135°,求∠BMN的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的图形,并且O的对应点O′的坐标为(4,3).
(1)求三角形ABO的面积;
(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′ 、B′ ;
(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为__________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】完成下面的证明过程:
如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.
求证:∠A=∠D.
证明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四边形ABCD,其中AD//BC,AB⊥BC,将DC沿DE折叠,C落于
,
交CB于G,且ABGD为长方形(如图1);再将纸片展开,将AD沿DF折叠,使A点落在DC上一点
(如图2),在两次折叠过程中,两条折痕DE、DF所成的角为____________度.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.![]()
(1)求点A、B、C的坐标;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;
(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;
(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=
DQ,求点F的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连结BF.
![]()
(1)求证:四边形BDCF是平行四边形;
(2)当AC=BC时,判断四边形BDCF是哪种特殊的平行四边形,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读:已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,ab=3,
∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.
请你根据上述解题思路解答下面问题:
(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.
(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】校园内有一个花坛,是由两个边长均为2.5m的正六边形围成的(如图中的阴影部分所示),学校现要将这个花坛在原有的基础上扩建成一个如图所示的菱形区域,则扩建后菱形区域的周长为( )
![]()
A.30mB.
mC.20mD.
m
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC的面积为16,BC=8,现将△ABC沿直线向右平移a(a<8)个单位到△DEF的位置.
![]()
(1)求△ABC的BC边上的高.
(2)连结AE、AD,设AB=5
①求线段DF的长.
②当△ADE是等腰三角形时,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com