相关习题
 0  352558  352566  352572  352576  352582  352584  352588  352594  352596  352602  352608  352612  352614  352618  352624  352626  352632  352636  352638  352642  352644  352648  352650  352652  352653  352654  352656  352657  352658  352660  352662  352666  352668  352672  352674  352678  352684  352686  352692  352696  352698  352702  352708  352714  352716  352722  352726  352728  352734  352738  352744  352752  366461 

科目: 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.

(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;

(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】计算:

122+0+(﹣0.22014×52014

2)(2a3b3(﹣8ab2÷(﹣4a4b3

3)(2a+12﹣(2a+1)(﹣1+2a

4201922018×2020(运用整式乘法公式进行计算)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形的顶点AC分别在y轴和x轴上,边BC的中点Fy轴上,若反比例函数y的图象恰好经过CD的中点E,则OA的长为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等边ABC边长为10PAB上,QBC延长线,CQPA,过点PPEACE,过点PPFBQ,交AC边于点F,连接PQAC于点D,则DE的长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;

(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).

查看答案和解析>>

科目: 来源: 题型:

【题目】推理填空:

如图,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=∠2(已知),且∠1=∠4   

∴∠2=∠4 (等量代换)

CEBF    

∴∠   =∠3   

又∵∠B=∠C(已知),∴∠3=∠B(等量代换)

ABCD    

查看答案和解析>>

科目: 来源: 题型:

【题目】从甲地到乙地有三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:

公交车用时的频数

公交车用时线路

合计

59

151

166

124

500

50

50

122

278

500

45

265

160

30

500

早高峰期间,乘坐_________(填)线路上的公交车,从甲地到乙地用时不超过45分钟的可能性最大.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线轴交于两点轴交于点动点沿的边以每秒个单位长度的速度由起点向终点运动,过点轴的垂线,交的另一边于点沿折叠,使点落在点处,设点的运动时间为秒.

1)求抛物线的解析式;

2N为抛物线上的点(不与点重合)且满足直接写出点的坐标;

3)是否存在某一时刻,使的面积最大,若存在,求出的值和最大面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料I:

教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.

问题解决:

1)已知为方程的两根,则: __ ___ _,那么_ (请你完成以上的填空)

阅读材料:II

已知,且.求的值.

:可知

,即

是方程的两根.

问题解决:

2)若

3)已知.求的值.

查看答案和解析>>

同步练习册答案