相关习题
 0  352914  352922  352928  352932  352938  352940  352944  352950  352952  352958  352964  352968  352970  352974  352980  352982  352988  352992  352994  352998  353000  353004  353006  353008  353009  353010  353012  353013  353014  353016  353018  353022  353024  353028  353030  353034  353040  353042  353048  353052  353054  353058  353064  353070  353072  353078  353082  353084  353090  353094  353100  353108  366461 

科目: 来源: 题型:

【题目】四边形ABCD是正方形,EF分别是DCCB的延长线上的点,且DE=BF,连接AEAFEF

1)求证:△ADE≌△ABF

2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;

3)若BC=8DE=6,求△AEF的面积。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是两块完全一样的含30°角的直角三角尺分别记做△ABC△A′B′C′,现将两块三角尺重叠在一起设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′∠A=30°,AC=10两直角顶点C,C′间的距离是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,转盘被等分成六个扇形,并在上面依次写上数字123456.

1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?

2)若自由转动转盘,当它停止转动时,指针指向的数小于或等于4的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】有一张三角形纸片ABC,∠A=80°,点DAC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则C的度数可以是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在平面直角坐标系中,A0,﹣1)、B(﹣20C40

1)求△ABC的面积;

2)在y轴上是否存在一个点D,使得△ABD为等腰三角形,若存在,求出点D坐标;若不存,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,A30),B03),过点By轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点CCEOC交直线l于点E

1)求∠OBA的度数,并直接写出直线AB的解析式;

2)若点C的横坐标为2,求BE的长;

3)当BE1时,求点C的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程:(1) 2.

【答案】1x1 =1 x2= (2) x1 =-1x2= .

【解析】试题分析:

根据两方程的特点使用“因式分解法”解两方程即可.

试题解析

1)原方程可化为:

方程左边分解因式得

解得 .

2)原方程可化为: ,即

解得 .

型】解答
束】
20

【题目】已知x1x2是关于x的一元二次方程x22(m1)xm250的两实根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一边长为7,若x1x2恰好是△ABC另外两边的边长,求这个三角形的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知x1x2是关于x的一元二次方程x22(m1)xm250的两实根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一边长为7,若x1x2恰好是△ABC另外两边的边长,求这个三角形的周长.

【答案】(1)m的值为6;(2)17.

【解析】试题分析

1)由题意和根与系数的关系可得:x1x22(m1)x1x2m25(x11)(x21)28,可得x1x2(x1x2)27从而得到m252(m1)27,解方程求得m的值再由“一元二次方程根的判别式”进行检验即可得到m的值;

27为腰长时,则方程的两根中有一根为7,代入方程可解得m的值(此时m的取值需满足根的判别式 ),将m的值代入原方程,可求得两根(此时两根和7需满足三角形三边之间的关系),从而可求得等腰三角形的周长;

7为底边时,则方程的两根相等,由此可得“根的判别式△=0”,从而可得关于m的方程,解方程求得m的值,代入原方程可求得方程的两根,再由三角形三边之间的关系检验即可.

试题解析

(1)(x11)(x21)28,即x1x2(x1x2)27,而x1x22(m1)x1x2m25

∴m252(m1)27

解得m16m2=-4

又Δ=[2(m1)]24×1×(m25)≥0时,m≥2

∴m的值为6; 

(2) 7为腰长,则方程x22(m1)xm250的一根为7

722×7×(m1)m250

解得m110m24

m10时,方程x222x1050,根为x115x27,不符合题意,舍去.

m4时,方程为x210x210,根为x13x27,此时周长为77317 

7为底边,则方程x22(m1)xm250有两等根,

∴Δ0,解得m2,此时方程为x26x90,根为x13x2333<7,不成立,

综上所述,三角形周长为17

点睛:(1)一元二次方程根与系数的关系成立的前提条件是方程要有实数根,即“根的判别式△ ”;(2)涉及三角形边长的问题中,解得的结果都需要用“三角形三边之间的关系”检验,看三条线段能否围成三角形.

型】解答
束】
21

【题目】如图,已知在△ABC中,DAB的中点,且∠ACD=∠B,若 AB=10,求AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在△ABC中,DAB的中点,且∠ACD=∠B,若 AB=10,求AC的长.

【答案】5.

【解析】试题分析

由点DAB的中点,AB=10,易得AD=5;再由∠ACD=∠B∠A=∠A,可证得

ACD∽△ABC从而可得: 由此得到AC2=ADAB=50即可解得AC的值.

试题解析

∵∠ACD=∠B∠A=∠A

∴△ACD∽△ABC

AC2=ADAB.

∵DAB的中点,AB=10

AD=AB=5,

∴AC2=50

解得AC=.

型】解答
束】
22

【题目】口袋中装有四个大小完全相同的小球,把它们分别标号1,2,3,4,从中随机摸出一个球,记下数字后放回,再从中随机摸出一个球,利用树状图或者表格求出两次摸到的小球数和等于4的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】我市自开展学习新思想,做好接班人主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.

某校抽查的学生文章阅读的篇数统计表

文章阅读的篇数()

3

4

5

6

7及以上

人数()

20

28

m

16

12

请根据统计图表中的信息,解答下列问题:

(1)求被抽查的学生人数和的值;

(2)求本次抽查的学生文章阅读篇数的中位数和众数;

(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.

查看答案和解析>>

同步练习册答案