相关习题
 0  353399  353407  353413  353417  353423  353425  353429  353435  353437  353443  353449  353453  353455  353459  353465  353467  353473  353477  353479  353483  353485  353489  353491  353493  353494  353495  353497  353498  353499  353501  353503  353507  353509  353513  353515  353519  353525  353527  353533  353537  353539  353543  353549  353555  353557  353563  353567  353569  353575  353579  353585  353593  366461 

科目: 来源: 题型:

【题目】如图,已知AB=12,点CDAB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以APBP为斜边在AB的同侧画等腰RtAPE和等腰RtPBF,连接EF,取EF的中点G,下列说法中正确的有(  )

①△EFP的外接圆的圆心为点G②四边形AEFB的面积不变;

EF的中点G移动的路径长为4④△EFP的面积的最小值为8

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】某自行车厂一周计划生产辆自行车,平均每天生产自行车辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入.下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负.单位:辆):

星期

增减

1)根据记录可知前三天共生产自行车__________辆.

2)产量最多的一天比产量最少的一天多生产__________辆.

3)该厂实行按生产的自行车数量的多少计工资,即计件工资制.每生产一辆自行车可以得人民币元,若超额完成任务,则超出部分,每辆元;若不足计划数的,每少生产一辆扣元,那么该厂工人这一周的工资总额是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠B30°,边AB的垂直平分线分别交ABBC于点DE,且AE平分∠BAC

1)求∠C的度数;

2)若CE1,求AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】解下列不等式组:

1

2

3

4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C,作直线BC,点P是抛物线上一个动点(点P不与点B,C重合),连结PB,PC,以PB,PC为边作CPBD,设CPBD的面积为S,点P的横坐标为m.

(1)求抛物线对应的函数表达式;

(2)当点P在第四象限,且CPBD有两个顶点在x轴上时,求点P的坐标;

(3)求S与m之间的函数关系式;

(4)当x轴将CPBD的面积分成1:7两部分时,直接写出m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,ABAC,∠A120°AB的垂直平分线交BCM,交ABEAC的垂直平分线交BCN,交ACF,若MN2,则NF=___________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,AB=4,点D是AB的中点,动点P、Q同时从点D出发(点P、Q不与点D重合),点P沿D→A以1cm/s的速度向中点A运动.点Q沿D→B→D以2cm/s的速度运动.回到点D停止.以PQ为边在AB上方作正方形PQMN,设正方形PQMN与△ABC重叠部分的面积为S(cm2),点P运动的时间为t(s).

(1)当点N在边AC上时,求t的值.

(2)用含t的代数式表示PQ的长.

(3)当点Q沿D→B运动,正方形PQMN与△ABC重叠部分图形是五边形时,求S与t之间的函数关系式.

(4)直接写出正方形PQMN与△ABC重叠部分图形是轴对称图形时t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在矩形ABCD中,AD=3,CD=4,点ECD上,且DE=1.

(1)感知:如图①,连接AE,过点EEFAE,交BC于点F,连接AE,易证:△ADE≌△ECF(不需要证明);

(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点EEFPE,交BC于点F,连接PF.求证:△PDE和△ECF相似;

(3)应用:如图③,若EFAB于点F,EFPE,其他条件不变,且△PEF的面积是6,则AP的长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】某物流公司的快递车和货车同时从甲地出发,匀速向乙地行驶,快递车的速度为100km/h,货车的速度为60km/h,结果快递车比货车早2h到达乙地.快递车到达乙地后卸完物品再另装货物共用30min,立即按原路以90km/h速度匀速返回,直至与货车相遇.设两车之间的距离y(km).货车行驶时间为x(h).

(1)求甲、乙两地之间的距离.

(2)求快递车返回时y与x之间的函数关系式.

(3)建立适当的坐标系画出y与x之间的函数图象.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:直线EF//MN,点AB分别为EFMN上的动点,且ACB= aBD平分CBNEFD

1)若FDB=120°,a=90°.如图1,求MBCEAC的度数?

2)延长AC交直线MNG,这时a =80°,如图2GH平分AGBDB于点H,问GHB是否为定值,若是,请求值.若不是,请说明理由?

查看答案和解析>>

同步练习册答案