科目: 来源: 题型:
【题目】已知抛物线y=2x2+bx+c经过点A(2,-1) .
(1)若抛物线的对称轴为x=1,求b,c的值;
(2)求证:抛物线与x轴有两个不同的交点;
(3)设抛物线顶点为P,若O、A、P三点共线(O为坐标原点),求b的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(10分)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
![]()
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.
(1)证明:四边形CEFG是菱形;
(2)若AB=8,BC=10,求四边形CEFG的面积;
(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且
,连接BF.
证明:
;
当
满足什么条件时,四边形AFBD是矩形?并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在数轴上点A所表示的数是
,点B在点A的右侧,AB=6;点C在AB之间, AC=2BC.
(1)在数轴上描出点B;
(2)求点C所表示的数,并在数轴上描出点C;
(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.
![]()
(1)求证:△ADG≌△CDG.
(2)若
=
,EG=4,求AG的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。
![]()
(1)求证:OE=OF;
(2)若BC=
,求AB的长。
查看答案和解析>>
科目: 来源: 题型:
【题目】在精准扶贫政策的扶持下,贫困户老李今年试种的百香果获得大丰收,共收获2 000千克.扶贫小组帮助他将百香果按照品质从高到低分成A,B,C,D,E五个等级,并根据数据绘制了如下的扇形统计图和频数分布表:
![]()
请根据图表信息解答下列问题:
(1)
__________;
__________;
__________;
(2)求扇形统计图中“E”所对应的圆心角的度数;
(3)为了帮助贫困户老李销售百香果,扶贫小组联系了甲、乙两位经销商.他们分别给出如下收购方案:
甲:全部按5元/千克收购;
乙:按等级收购:C等级单价为6.5元/千克,每提高一个等级单价提高1元/千克,剩下的D,E两个等级单价均为2元/千克.
请你通过计算,判断哪个经销商的方案使老李盈利更多.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com