科目: 来源: 题型:
【题目】如图,在数轴上有A、B两点,所表示的数分别为a、a+4,A点以每秒3个单位长度的速度向正方向运动,同时B点以每秒1个单位长度的速度也向正方向运动,设运动时间为t秒.
![]()
(1)运动前线段AB的长为 ,t秒后,A点运动的距离可表示为 , B点运动距离可表示为
(2)当t为何值时,A、B两点重合,并求出此时A点所表示的数(用含有a的式子表示);
(3)在上述运动的过程中,若P为线段AB的中点,O为数轴的原点,当a=-8时,是否存在这样的值,使得线段PO=5,若存在,求出符合条件的值;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】为了推动我县“三进校园”活动的广泛开展,引导学生走向操场,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:
![]()
(1)本次接受随机抽样调查的学生人数为 ,图①中
的值为 ;
(2)本次调查获取的样本数据的众数为 ,中位数为 ;
(3)根据样本数据,若学校计划购买
双运动鞋,建议购买
号运动鞋 双.
查看答案和解析>>
科目: 来源: 题型:
【题目】某班数学科代表小芳对本年级同学参加课外兴趣小组活动情况进行随机抽样调查,根据调查数据小芳同学还制作了参加课外兴趣小组活动情况的两个统计图(见下图)
(1)此次被调查的人数是多少?
(2)将图②补充完整;
(3)求出图①中表示“写作”兴趣小组的扇形圆心角度数;
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
.其中正确结论的序号是________________
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的"距离",记作d(M,N) . 特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图像为L,L 与y 轴交点为D, △ABC中,A(0,1),B(-1,0),C(1,0).
(1)求d(点 D , △ABC)= ;当k=1时,求d( L , △ABC)= ;
(2)若d(L, △ABC)=0.直接写出k的取值范围;
(3)函数y=x+b的图像记为W , 若d(W,△ABC)
1 ,求出b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】正方形
中,M为边CB延长线上一点,过点A作直线AM,设∠BAM=α,点B关于直线AM的对称点为点E,连接AE、DE,DE交AM于点N.
(1)依题意补全图形;当α=30°时, 直接写出∠AND的度数;
(2)当α发生变化时,∠AND的度数是否发生变化?说明理由;
(3)探究线段AN,EN,DN的数量关系,并证明.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB=10cm,C是线段AB上一个动点,沿A→B→A以2cm/s的速度往返运动一次,D是线段BC的中点,设点C的运动时间为t秒(0≤t≤10).
![]()
(1)当t=2时,求线段CD的长.
(2)当t=6时,求线段AC的长.
(3)求运动过程中线段AC的长.(用含t的代数式表示)
(4)在运动过程中,设AC的中点为E,线段DE的长是否发生变化?若不变,直接写出DE的长;若发生变化,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,直线
与x轴,y轴分别交于点A,B,将直线AB向右平移6个单位长度,得到直线CD,点A平移后的对应点为点D,点B平移后的对应点为点C.
(1)求点C的坐标;
(2)求直线CD的表达式;
(3)若点B关于原点的对称点为点E,设过点E的直线
,与四边形ABCD有公共点,结合函数图象,求k的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂按用户的月需求量
(件)完成一种产品的生产,其中
.每件的售价为18万元,每件的成本
(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量
(件)成反比.经市场调研发现,月需求量
与月份
(
为整数,
)符合关系式
(
为常数),且得到了表中的数据.
月份 | 1 | 2 |
成本 | 11 | 12 |
需求量 | 120 | 100 |
(1)求
与
满足的关系式,请说明一件产品的利润能否是12万元;
(2)求
,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第
个月和第
个月的利润相差最大,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com