相关习题
 0  355859  355867  355873  355877  355883  355885  355889  355895  355897  355903  355909  355913  355915  355919  355925  355927  355933  355937  355939  355943  355945  355949  355951  355953  355954  355955  355957  355958  355959  355961  355963  355967  355969  355973  355975  355979  355985  355987  355993  355997  355999  356003  356009  356015  356017  356023  356027  356029  356035  356039  356045  356053  366461 

科目: 来源: 题型:

【题目】东坡商贸公司购进某种水果的成本为20/kg,经市场调研发现,这种水果在未来48天的销售价格p(/kg)与时间t()之间的函数关系式为p=且日销售量y(kg)与销售时间t()的关系如下表:

(1)已知yt的变化规律符合一次函数关系,试求在第30天的日销售量是多少;

(2)问哪一天的销售利润最大,最大日销售利润为多少?

(3)在实际销售的前24天中,公司决定每销售1 kg水果就捐赠n元利润(n<9)精准扶贫对象,现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据给出的数轴及已知条件,解答下面的问题:

1)已知点ABC表示的数分别为1-3.观察数轴,与点A的距离为3的点表示的数是 AB两点之间的距离为

2)数轴上,点B关于点A的对称点表示的数是

3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上MN两点之间的距离为2019MN的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是 ,点N表示的数是

4)若数轴上PQ两点间的距离为aPQ的左侧),表示数b的点到PQ的两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是 ,点Q表示的数是 (用含ab的式子表示这两个数)。

查看答案和解析>>

科目: 来源: 题型:

【题目】1)如图,试判断之间的关系.并说明理由.

2)如图.试判断的位置关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗. 我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用ABCD表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整) 请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DEAC,垂足为点E.

求证:(1)ABC是等边三角形;(2)AE=CE.

查看答案和解析>>

科目: 来源: 题型:

【题目】将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,图3中共有7个正方形;将图34个较小的正方中的一个剪开得到图4,则图4中共有10个正方形,照这个规律剪下去……

1)根据图中的规律补全下表:

图形标号

1

2

3

4

5

6

n

正方形个数

1

4

7

10

2)求第几幅图形中有2020个正方形?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).

(1)求小敏到旗杆的距离DF.(结果保留根号)

(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)

查看答案和解析>>

科目: 来源: 题型:

【题目】综合与探究

问题情境:

在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OEBC交于点MOGDC交于点N

“兴趣小组”写出的两个数学结论是:

SOMC+SONCS正方形ABCD

BM2+CM22OM2

问题解决:

1)请你证明“兴趣小组”所写的两个结论的正确性.

类比探究:

2)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(2),将正方形OEFG在图(1)的基础上旋转一定的角度,当OECB的延长线交于点MOGDC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.

(1)求抛物线的解析式;

(2)当m为何值时,S四边形OBDC=2SBPD

(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,点OAC边上一动点,过点OBC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F

1)求证:EOFO

2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.

3)在第(2)问的结论下,若AE3EC4AB12BC13,请直接写出凹四边形ABCE的面积为   

查看答案和解析>>

同步练习册答案