科目: 来源: 题型:
【题目】如图,四边形ABCD的四个顶点分别在反比例函数
与
(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=3,AO=
,那么AC的长等于( )
![]()
A. 7 B. 8 C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一条高铁线A,B,C三个车站的位置如图所示.已知B,C两站之间相距530千米.高铁列车从B站出发,向C站方向匀速行驶,经过13分钟距A站165千米;经过80分钟距A站500千米.
![]()
(1)求高铁列车的速度和AB两站之间的距离.(2)如果高铁列车从A站出发,开出多久可以到达C站?
查看答案和解析>>
科目: 来源: 题型:
【题目】将一副三角板中的两块直角板中的两个直角顶点重合在一起,即按如图所示的方式叠放在一起,其中∠A=60°,∠B=30,∠D=45°.
(1)若∠BCD=45°,求∠ACE的度数.
(2)若∠ACE=150°,求∠BCD的度数.
(3)由(1)、(2)猜想∠ACE与∠BCD存在什么样的数量关系并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.
(1)求经过B、E、C三点的抛物线的解析式;
(2)若点P为线段FG上一个动点(与F、G不重合),当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,请求出此时点P的坐标;
(3)若点P为直线FG上一个动点,Q为抛物线上任一点,抛物线的顶点为N,探究以P、Q、M、N为顶点的四边形能否成为平行四边形?若能,请直接写出点P的坐标;若不能,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO,交AD于点F,OE⊥OB交BC于点E.
(1)如图1,当O为边AC中点,
时,求
的值.小明这样想的,过O点作OH∥AB交BC于点H,可证△AOF∽△HOE,于是求出答案,请你直接写出答案
;
(2)如图2,当O为边AC中点,
时,请求出
的值,并说明理由;
(3)如图3,当
,
时,请直接写出
的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在某书店准备购进甲、乙两种图书共100本,购书款不高于2224元,两种图书的进价、售价如下表所示:
甲种图书 | 乙种图书 | |
进价(元/本) | 16 | 28 |
售价(元/本) | 26 | 40 |
请解答下列问题:
(1)在这批图书全部售出的条件下,书店如何进货利润最大?最大利润是多少?
(2)书店计划用(1)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com