科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中,A(-1,5)、B(-1,0)、C(-4,3).
![]()
(1)直接写出△ABC 的面积为 ;
(2)在图形中作出△ABC 关于y 轴的对称图形△A1B1C1,并直接写出△A1B1C1的三个顶点的坐标:A1( ),B1( ),C1( );
(3)是否存在一点 P 到 AC、AB 的距离相等,同时到点 A、点 B 的距离也相等.若存在保留作图痕迹标出点 P 的位置,并简要说明理由;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(7分)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.
(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;
(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线,在△ABC中,∠B=30°,AD和 DE是△ABC的三分线,点D在 BC 边上,点E在 AC边上,且AD=BD,DE=CE,请写出∠C所有可能的度数________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,DE⊥AC,垂足为点E,∠AGF=∠ABC,∠BFG+∠BDE=180°,
求证:BF⊥AC.
![]()
请完成下面的证明的过程,并在括号内注明理由.
证明:∵∠AGF=∠ABC(已知)
∴FG∥ ( )
∴∠BFG=∠FBC( )
∵∠BFG+∠BDE=180°(已知)
∴∠FBC+∠BDE=180°( )
∴BF∥DE( )
∴∠BFA= (两直线平行,同位角相等)
∵DE⊥AC(已知)
∴∠DEA=90°( )
∴∠BFA=90°(等量代换)
∴BF⊥AC(垂直的定义)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,H是边BC的中点,连接 DH与 BE相交于点 G,若GE=3,则BF=_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下列各组条件中,能够判定△ABC≌△DEF 的是( )
A. ∠A=∠D,∠B=∠E,∠C=∠FB. AB=DE,BC=EF,∠A=∠D
C. ∠B=∠E=90°,BC=EF,AC=DFD. ∠A=∠D,AB=DF,∠B=∠E
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点
从原点出发沿数轴向左运动,同时点
从原点出发沿数轴向右运动,
秒钟后,两点相距
个单位长度,已知点
的速度是点A的速度的
倍.(速度单位:单位长度/秒)
![]()
(1)求出点
点
运动的速度.
(2)若
、
两点从(1)中位置开始,仍以原来的速度同时沿数轴向左运动,几秒时原点恰好处在点
点
的正中间?
(3)若
、
两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点
同时从
点位置出发向
点运动,当遇到
点后,立即返回向
点运动,遇到
点又立即返回向
点运动,如此往返,直到
点追上
点时,点
一直以
单位长度/秒的速度运动,那么点
从开始运动到停止运动,行驶的路程是多少单位长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.
![]()
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com