科目: 来源: 题型:
【题目】如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】将长方形纸片ABCD如图折叠,B、C 两点恰好重合落在AD 边上的同一点P 处,折痕分别是MH、NG,已知∠MPN=90°,且PM=3,MN=5.则△PGN面积为____.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题:①如果3、4、5为一组勾股数,那么3k、4k、5k仍是勾股数;②含有45°角的直角三角形的三边长之比是1∶1:;③如果一个三角形的三边是9,12,13,那么此三角形是直角三角形;④一个直角三角形的两边长是3和4,它的斜边是5.其中正确的个数是 ( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】直角坐标系中,已知A(1,0),以点A为圆心画圆,点M(4,4)在⊙A上,直线y=﹣x+b过点M,分别交x轴、y轴于B、C两点.
(1)①填空:⊙A的半径为 ,b= .(不需写解答过程)
②判断直线BC与⊙A的位置关系,并说明理由.
(2)若EF切⊙A于点F分别交AB和BC于G、E,且FE⊥BC,求的值.
(3)若点P在⊙A上,点Q是y轴上一点且在点C下方,当△PQM为等腰直角三角形时,直接写出点Q的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰中,,点A、B分别在坐标轴上.
(1)如图①,若,,求C点的坐标;
(2)如图②,若点A的坐标为,点B在y轴的正半轴上运动时,分别以OB,AB为边在第一,第二象限作等腰,等腰,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度是否变化?如果不变求出PB值,如果变化求PB的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2013年初春,我国西北部分省区发生了雪灾,造成通讯受阻.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为45°,塔基A的俯角为30°,又测得斜坡上点A到点B的坡面距离AB为20米,求折断前发射塔的高.
查看答案和解析>>
科目: 来源: 题型:
【题目】在学校开展的数学活动课上,小明和小刚制作了一个正三楼锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下每人投掷三棱锥两次,并记录底面的数字,如果两次所掷数字的和为单数,那么算小明赢,如果两欢所掷数字的和为偶数,那么算小明赢;
(1)请用列表或者面树状围的方法表示上述游戏中的所有可能结果.
(2)请分别隶出小明和小刚能赢的概率,并判新游戏的公平性.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,⊙O为△ABC的外接圆,AB=AC,直线MN与⊙O相切于点C,弦BD∥MN,AC与BD相交于点E.
(1)求证:△ABE ≌ △ACD;
(2)若AB = 5,BC = 3,求AE.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.
(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.
(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com