相关习题
 0  357663  357671  357677  357681  357687  357689  357693  357699  357701  357707  357713  357717  357719  357723  357729  357731  357737  357741  357743  357747  357749  357753  357755  357757  357758  357759  357761  357762  357763  357765  357767  357771  357773  357777  357779  357783  357789  357791  357797  357801  357803  357807  357813  357819  357821  357827  357831  357833  357839  357843  357849  357857  366461 

科目: 来源: 题型:

【题目】如图,在△ABC中,ABACDBC边上的中点,连结ADBE平分∠ABCAC于点E,过点EEFBCAB于点F

1)若∠C40°,求∠BAD的度数;

2)求证:FBFE

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,APQ的面积为S,则S与t的函数关系的图象是【 】

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC是等腰三角形,ABAC,点DAB上一点,过点DDEBCBC于点E,交CA延长线于点F

1)证明:ADF是等腰三角形;

2)若∠B60°BD4AD2,求EC的长,

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上

1)画出△ABC关于y轴对称的△A1B1C1;写出A1B1C1的坐标。

2)画出△ABC向下平移5个单位后的△A2B2C2,并求出平移过程中线段AC扫过的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:如图1,在平面直角坐标系中,点M是二次函数图象上一点,过点M轴,如果二次函数的图象与关于l成轴对称,则称关于点M的伴随函数如图2,在平面直角坐标系中,二次函数的函数表达式是,点M是二次函数图象上一点,且点M的横坐标为m,二次函数关于点M的伴随函数.

的函数表达式.

在二次函数的图象上,若a的取值范围为______

过点M轴,

如果,线段MN的图象交于点P,且MP3,求m的值.

如图3,二次函数的图象在MN上方的部分记为,剩余的部分沿MN翻折得到,由所组成的图象记为.以为顶点在x轴上方作正方形直接写出正方形ABCDG有三个公共点时m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在ABCD中,,射线AE平分动点P的速度沿AD向终点D运动,过点PAE于点Q,过点P,过点Q,交PM于点设点P的运动时间为,四边形APMQ与四边形ABCD重叠部分面积为

______用含t的代数式表示

当点M落在CD上时,求t的值.

St之间的函数关系式.

如图2,连结AM,交PQ于点G,连结ACBD交于点H,直接写出t为何值时,GH与三角形ABD的一边平行或共线.

查看答案和解析>>

科目: 来源: 题型:

【题目】感知:如图1,在中,DE分别是ABAC两边的中点,延长DE至点F,使,连结易知

探究:如图2AD的中线,BEAC于点E,交AD于点F,且,求证:

应用:如图3,在中,DE的中位线过点DE,分别交边BC于点FG,过点A,分别与FDGE的延长线交于点MN,则四边形MFGN周长C的取值范围是______

查看答案和解析>>

科目: 来源: 题型:

【题目】如下图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点A坐标是,则经过第2019次变换后所得的A点坐标是________

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂安排甲、乙两个运输队各从仓库调运物资300吨,两队同时开始工作,甲运输队工作3天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输的工作效率降低到原来的甲、乙运输队调运物资的数量与甲工作时间的函数图象如图所示.

____________

求甲运输队重新开始工作后,甲运输队调运物资的数量与工作时间的函数关系式;

直接写出乙运输队比甲运输队多运50吨物资时x的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查每个被调查的学生必须选择而且只能选择其中一门对调查结果进行整理,绘制成如下两幅不完整的统计图请结合图中所给信息解答下列问题:

本次调查的学生共有______人,在扇形统计图中,m的值是______

分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.

该校共有学生2000人,估计该校约有多少人选修乐器课程?

查看答案和解析>>

同步练习册答案