科目: 来源: 题型:
【题目】如图,在△ABC中,AB=BC,∠ABC=90°,E为BC边上一点(不与B、C重合),D为AB延长线上一点且BD=BE.点F、G分别为AE、CD的中点.
(1)求证:AE=CD.
(2)求证:△BFG为等腰直角三角形.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一个矩形的长为a,宽为b(a>0,b>0),则矩形的面积为ab.代数式xy(x>0,y>0)可以看作是边长为x和y的矩形的面积.我们可以由此解一元二次方程:x2+x﹣6=0(x>0).具体过程如下:
①方程变形为x(x+1)=6.
②画四个边长为x+1、x的矩形如图放置;
③由面积关系求解方程.
∵SABCD=(x+x+1)2,又SABCD=4x(x+1)+12.
∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,
∴(2x+1)2=25,
∵x>0,
∴x=2.
参照上述方法求关于x的二次方程x2+mx﹣n=0的解(x>0,m>0,n>0).(要求:画出示意图,标注相关线段的长度,写出解题步骤)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB=BC,点D为BC边上任意一点(与B、C不重合),以BD为直角边构造等腰直角三角形BDE,F为AD的中点.
(1)将△BDE绕点B旋转,当点E与F重合时,求证:∠BAE+∠BCD=45°.
(2)将△BDE绕点B旋转,当点F在BE上且AB=AD时,求证:2CD=BE.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共
个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:
请估计:当
很大时,摸到白球的频率将会接近于多少?
摸球的次数 |
|
|
|
|
|
|
摸到白球的次数 |
|
|
|
|
|
|
摸到白球的概率 |
|
|
|
|
|
|
假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?
试估算口袋中黑、白两种颜色的球各有多少个?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD中,AD=2AB,∠ABC=90°,将△ABC沿BC翻折得到△A′BC,且A′、C、D三点共线,∠A′CB=52°,则∠CAD=( )
![]()
A.78°B.66°C.52°D.38°
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法一定正确的是( )
A.所有的等边三角形都是全等三角形
B.全等三角形是指形状相同的两个三角形
C.全等三角形是指面积相等的两个三角形
D.全等三角形的周长和面积分别相等
查看答案和解析>>
科目: 来源: 题型:
【题目】问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120 ,∠B=∠ADC=90°.E、F分别是 BC,CD 上的点。且∠EAF=60° . 探究图中线段BE,EF,FD 之间的数量关系。 小王同学探究此问题的方法是,延长 FD 到点 G,使 DG=BE,连结 AG,先证明△ABE≌△ADG, 再证明△AEF≌△AGF,可得出结论,他的结论应是_________;
探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180° .E,F 分别是 BC,CD 上的点,且∠EAF=
∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东 70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55 海里/小时的速度前进,舰艇乙沿北偏东 50°的方向以 75 海里/小时的速度前进2小时后, 指挥中心观测到甲、乙两舰艇分别到达 E,F 处,且两舰艇之间的夹角为70° ,试求此时两舰 艇之间的距离。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有
个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为
人次,公园游戏场发放的福娃玩具为
个.
求参加一次这种游戏活动得到福娃玩具的概率;
请你估计袋中白球接近多少个?
查看答案和解析>>
科目: 来源: 题型:
【题目】为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
甲型客车 | 乙型客车 | |
载客量(人/辆) | 35 | 30 |
租金(元/辆) | 400 | 320 |
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com