科目: 来源: 题型:
【题目】如图1所示,在中,,点是线段延长线上一点,且,点是线段上一点,连接,以为斜边作等腰,连接,满是条件.
(1)若,,,求的长度;
(2)求证:;
(3)如图2,点是线段延长线上一点,其余条件与题干一致,探究、、之间的数量关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
合计 |
()统计图表中的__________,__________,__________.
()请将频数分布直方图补充完整.
()求所有被调查学生课外阅读的平均本数.
()若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于平面直角坐标系中的任意两点我们把叫做、两点间的直角距离.
(1)已知点A(1,1),点B(3,4),则d(A,B)=________.
(2)已知点E(a,a),点F(2,2),且d(E,F)=4,则a=________.
(3)已知点M(m,2)点N(1,0),则d(M,N)的最小值为________.
(4)设是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(,Q)的最小值叫做到直线y=ax+b的直角距离,试求点M(5,1)到直线y=x+2的直角距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).
(1)求tan∠OPQ的值;
(2)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.
①求抛物线C′的解析式;
②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线的图象经过点,且与直线交于点.
(1)求直线的解析式,并直接写出不等式的解集;
(2)若为坐标原点,直线与轴交于点,在轴上是否存在一点,满足.若存在,求出此时点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】春节临近,各家各户将会准备置办年货,为满足顾客的需求,某超市计划用不超过20000元购进甲、乙两种商品共1200件进行销售.甲、乙两种商品的进价分别为每件20元、14元,甲种商品每件的售价是乙种商品每件售价的1.4倍,若用280元在超市可购买甲种商品的件数比用800元购买乙种商品的件数少30件.
(1)甲乙两种商品的售价分别为每件多少元?
(2)超市为了让利顾客,决定甲种商品售价每件降低3元,乙种商品售价每件降低2元,问超市应如何进货才能获得最大利润?(假设购进的两种商品全部销售完)
查看答案和解析>>
科目: 来源: 题型:
【题目】为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由、、三种饼干搭配而成,每袋礼包的成本均为、、三种饼干成本之和.每袋甲类礼包有5包种饼干、2包种饼干、8包种饼干;每袋丙类礼包有7包种饼干、1包种饼干、4包种饼干.已知甲每袋成本是该袋中种饼干成本的3倍,利润率为,每袋乙的成本是其售价的,利润是每袋甲利润的;每袋丙礼包利润率为.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为,则当天该网店销售总利润率为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四边形ABCD中,AB=AD,BC=CD.
(1)如图1,请连接AC,BD,求证:AC垂直平分BD;
(2)如图2,若∠BCD=60°,∠ABC=90°,E,F分别为边BC,CD上的动点,且∠EAF=60°,AE,AF分别与BD交于G,H,求证:△AGH∽△AFE;
(3)如图3,在(2)的条件下,若 EF⊥CD,直接写出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需 分钟到达终点B.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com