相关习题
 0  358982  358990  358996  359000  359006  359008  359012  359018  359020  359026  359032  359036  359038  359042  359048  359050  359056  359060  359062  359066  359068  359072  359074  359076  359077  359078  359080  359081  359082  359084  359086  359090  359092  359096  359098  359102  359108  359110  359116  359120  359122  359126  359132  359138  359140  359146  359150  359152  359158  359162  359168  359176  366461 

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).

(1)求抛物线的解析式;

(2)P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当SPAD=3,若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;

(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,任意画一个∠BAC60°的△ABC,再分别作△ABC的两条角平分线BECDBECD相交于点P,连接AP,有以下结论:①∠BPC120°;②AP平分∠BAC;③ADAE;④PDPE;⑤BD+CEBC;其中正确的结论为_____.(填写序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知yt的函数关系图象如图2所示,请回答:

(1)线段BC的长为    cm.

(2)当运动时间t=2.5秒时,P、Q之间的距离是   cm.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+cx轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.

(1)求抛物线的解析式及顶点D的坐标;

(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;

(3)y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知:∠MON30°,点A1A2A3在射线ON上,点B1B2B3在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4均为等边三角形,若,则△A6B6A7的边长为(  )

A.6B.12C.16D.32

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是BCCD边上的点,∠EAF45°

1)如图(1),试判断EFBEDF间的数量关系,并说明理由;

2)如图(2),若AHEF于点H,试判断线段AHAB的数量关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线轴交于两点.

1)求该抛物线的解析式;

2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.

3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】DABC中∠BAC的平分线和BC的垂直平分线的交点,DGAB于点GDHACAC的延长线于点H

1)求证:BGCH

2)若AB12AC6,则BG  

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCABACAEDAEAD,∠EAD=∠BACACBD交于点O

1)试确定∠ADC与∠AEB间的数量关系,并说明理由;

2)若∠ACB65°,求∠BDC的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】五家尧草莓是我旗的特色农产品,深受人们的喜欢.某超市对进货价为10/千克的某种草莓的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.

1)求y关于x的函数关系式(不要求写出x的取值范围);

2)为了让顾客得到实惠,商场将销售价定为多少时,该品种草莓每天销售利润为150元?

3)应怎样确定销售价,使该品种草莓的每天销售利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案