科目: 来源: 题型:
【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=
,∠EAF=135°,则以下结论正确的是( )
![]()
A. DE=1 B. tan∠AFO=
C. AF=
D. 四边形AFCE的面积为 ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,
是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是
,当点P到达点B时,P、Q两点停止运动,设点P的运动时间
,解答下列各问题:
经过
秒时,求
的面积;
当t为何值时,
是直角三角形?
是否存在某一时刻t,使四边形APQC的面积是
面积的三分之二?如果存在,求出t的值;不存在请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=5,AB=9,求:
(1)指出旋转中心和旋转角度;
(2)求DE的长度;
(3)BE与DF的位置关系如何?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线y=﹣
x+2与x轴交于点B,与y轴交于点C,二次函数y=﹣
+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.
(1)求二次函数的表达式;
(2)如图1,点D是抛物线第四象限上的一动点,连接DC,DB,当S△DCB=S△ABC时,求点D坐标;
(3)如图2,在(2)的条件下,点Q在CA的延长线上,连接DQ,AD,过点Q作QP∥y轴,交抛物线于P,若∠AQD=∠ACO+∠ADC,请求出PQ的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】我们约定:对角线互相垂直的凸四边形叫做“正垂形”.
(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“正垂形”的有 ;
②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形 “正垂形”.(填“是”或“不是”)
(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,当
≤OE≤
时,求AC2+BD2的取值范围;
(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“正垂形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.试直接写出满足下列三个条件的抛物线的解析式;
①
; ②
; ③“正垂形”ABCD的周长为12
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.
(1)若基地一天的总销售收入为y元,求y与x的函数关系式;
(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.
(1)画出将△ABC向右平移2个单位得到△A1B1C1.
(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2.
(3)在x轴上找一点P,满足点P到点C1与C2距离之和最小,并求出P点的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的表达式是y=ax2+(1﹣a)x+1﹣2a(a为不等于0的常数),上述抛物线无论a为何值始终经过定点A和定点B;A为x轴上的点,B为第一象限内的点.
(1)请写出A,B两点的坐标:A( ,0);B( , );
(2)如图1,当抛物线与x轴只有一个公共点时,求a的值;
(3)如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.
求:①△ABC能否是直角三角形,为什么?
②若使得△ABD是直角三角形,请你求出a的值.(求出1个a的值即可)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com