相关习题
 0  359698  359706  359712  359716  359722  359724  359728  359734  359736  359742  359748  359752  359754  359758  359764  359766  359772  359776  359778  359782  359784  359788  359790  359792  359793  359794  359796  359797  359798  359800  359802  359806  359808  359812  359814  359818  359824  359826  359832  359836  359838  359842  359848  359854  359856  359862  359866  359868  359874  359878  359884  359892  366461 

科目: 来源: 题型:

【题目】如图,在中,,点的中点,在边上取点,使.绕点旋转,得到(点分别与点对应),当时,则___________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形的两个顶点坐标为,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是边长为1的正方形,E,FBD所在直线上的两点.若AE= EAF=135°,则以下结论正确的是(

A. DE=1 B. tanAFO= C. AF= D. 四边形AFCE的面积为

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图, 是边长为3cm的等边三角形,动点PQ同时从AB两点出发,分别沿ABBC方向匀速移动,它们的速度都是,当点P到达点B时,PQ两点停止运动,设点P的运动时间,解答下列各问题:

经过秒时,求的面积;

t为何值时, 是直角三角形?

是否存在某一时刻t,使四边形APQC的面积是面积的三分之二?如果存在,求出t的值;不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF5AB9,求:

1)指出旋转中心和旋转角度;

2)求DE的长度;

3BEDF的位置关系如何?

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线y=﹣x+2x轴交于点B,与y轴交于点C,二次函数y=﹣+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.

(1)求二次函数的表达式;

(2)如图1,点D是抛物线第四象限上的一动点,连接DC,DB,当SDCB=SABC时,求点D坐标;

(3)如图2,在(2)的条件下,点QCA的延长线上,连接DQ,AD,过点QQPy轴,交抛物线于P,若∠AQD=ACO+ADC,请求出PQ的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】我们约定:对角线互相垂直的凸四边形叫做“正垂形”.

(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“正垂形”的有   

②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形   “正垂形”.(填“是”或“不是”)

(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,当≤OE≤时,求AC2+BD2的取值范围;

(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“正垂形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4试直接写出满足下列三个条件的抛物线的解析式;

; ②; ③“正垂形”ABCD的周长为12

查看答案和解析>>

科目: 来源: 题型:

【题目】某蓝莓种植生产基地产销两旺采摘的蓝莓部分加工销售部分直接销售且当天都能销售完直接销售是40/加工销售是130/(不计损耗).已知基地雇佣20名工人每名工人只能参与采摘和加工中的一项工作每人每天可以采摘70斤或加工35设安排x名工人采摘蓝莓剩下的工人加工蓝莓

(1)若基地一天的总销售收入为yyx的函数关系式;

(2)试求如何分配工人才能使一天的销售收入最大?并求出最大值

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.

1)画出将△ABC向右平移2个单位得到△A1B1C1

2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2

3)在x轴上找一点P,满足点P到点C1C2距离之和最小,并求出P点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的表达式是y=ax2+(1﹣a)x+1﹣2a(a为不等于0的常数),上述抛物线无论a为何值始终经过定点A和定点B;A为x轴上的点,B为第一象限内的点.

(1)请写出A,B两点的坐标:A(   ,0);B(      );

(2)如图1,当抛物线与x轴只有一个公共点时,求a的值;

(3)如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.

求:①△ABC能否是直角三角形,为什么?

②若使得△ABD是直角三角形,请你求出a的值.(求出1个a的值即可)

查看答案和解析>>

同步练习册答案