相关习题
 0  359842  359850  359856  359860  359866  359868  359872  359878  359880  359886  359892  359896  359898  359902  359908  359910  359916  359920  359922  359926  359928  359932  359934  359936  359937  359938  359940  359941  359942  359944  359946  359950  359952  359956  359958  359962  359968  359970  359976  359980  359982  359986  359992  359998  360000  360006  360010  360012  360018  360022  360028  360036  366461 

科目: 来源: 题型:

【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F.

(1)证明与推断:

①求证:四边形CEGF是正方形;

②推断:的值为   

(2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AGBE之间的数量关系,并说明理由:

(3)拓展与运用:

正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG=6,GH=2,则BC=   

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,AB=4,BC=2,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,点O为正方形ABCD 的中心,EAB 边上一点,FBC边上一点,EBF的周长等于 BC 的长.

(1)求∠EOF 的度数.

(2)连接 OAOC(如图2).求证:AOECFO.

(3)OE=OF,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A0,﹣3)、B3,﹣2)、C2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.

1)画出△ABC向上平移4个单位得到的△A1B1C1

2)以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且△A2B2C与△ABC的位似比为21,并直接写出点B2的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于点F.

(1)求证:△ABE∽△DEF;

(2)求CF的长

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有(  )

(1)若通话时间少于120分,则A方案比B方案便宜20元;

(2)若通话时间超过200分,则B方案比A方案便宜12元;

(3)若通讯费用为60元,则B方案比A方案的通话时间多;

(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】盒子中有4个球,每个球上写有1~4中的一个数字,不同的球上数字不同.

(1)若从盒中取三个球,以球上所标数字为线段的长,则能构成三角形的概率是多少?

(2)若小明从盒中取出一个球,放回后再取出一个球,然后让小华猜两球上的数字之和,你认为小华猜和为多少时,猜中的可能性大.请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB6BC10,点ECD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点GAF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:EBG45°;②SABGSFGHDEF∽△ABG④AG+DFFG.其中正确的是_____.(把所有正确结论的序号都选上)

查看答案和解析>>

科目: 来源: 题型:

【题目】宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取ADBC的中点EF,连接EFDF,作∠DFC的平分线,交AD的延长线于点H,作HGBC,交BC的延长线于点G,则下列矩形是黄金矩形的是(  )

A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH

查看答案和解析>>

同步练习册答案