相关习题
 0  360075  360083  360089  360093  360099  360101  360105  360111  360113  360119  360125  360129  360131  360135  360141  360143  360149  360153  360155  360159  360161  360165  360167  360169  360170  360171  360173  360174  360175  360177  360179  360183  360185  360189  360191  360195  360201  360203  360209  360213  360215  360219  360225  360231  360233  360239  360243  360245  360251  360255  360261  360269  366461 

科目: 来源: 题型:

【题目】边长分别为6、8、10的三角形的内切圆半径是_____,外接圆半径是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.

(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?

(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.

(1)用含m的式子表示第三条边长;

(2)第一条边长能否为10米?为什么?

(3)若第一条边长最短,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2x1+x2=﹣ , x1x2=阅读下面应用韦达定理的过程:

若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2x12+x22的值.

解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韦达定理可得,x1+x2=﹣=﹣=2,x1x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列问题:

(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1,x2不解方程,求x12+x22的值;

(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α22=4,求k的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计)

(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.

要使折成的长方体盒子的底面积为484 cm2,那么剪掉的正方形的边长为多少?

折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.

(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程x2+2m﹣1x+m2=0有两个实数根x1x2

1)求实数m的取值范围;

2)当x12﹣x22=0时,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线yx+2x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过AB两点,与x轴的另一个交点为 C

(1)求抛物线的解析式;

(2)直线AB上方抛物线上的点D,使得∠DBA=2BAC,求D点的坐标;

(3)M是平面内一点,将BOC绕点M逆时针旋转90°后,得到B1O1C1,若B1O1C1的两个顶点恰好落在抛物线上,请求点B1的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知ADBCABBCABBC4P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D

1)如图1,当PAB的中点时,求出AD的长

2)如图2,延长PEAD于点F,连接CF,求证:∠PCF45°

3)如图3,∠MON45°,在∠MON内部有一点Q,且OQ8,过点QOQ的垂线GH分别交OMONGH两点.设QGxQHy,直接写出y关于x的函数解析式

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校计划在总费用2300元的限额内租用客车送234名学生和6名教师集体外出活动每辆客车上至少要有1名教师.现有甲、乙两种大客车它们的载客量和租金如下表所示.

甲种客车

乙种客车

载客量/(/)

45

30

租金/(/)

400

280

(1)共需租多少辆客车?

(2)请给出最节省费用的租车方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,在ABC中,∠ACB=30°

(1)如图1,当ABAC=2,求BC的值;

(2)如图2,当ABAC,点PABC内一点,且PA=2,PBPC=3,求∠APC的度数;

(3)如图3,当AC=4,ABCBCA),点PABC内一动点,则PA+PB+PC的最小值为   

查看答案和解析>>

同步练习册答案