相关习题
 0  360206  360214  360220  360224  360230  360232  360236  360242  360244  360250  360256  360260  360262  360266  360272  360274  360280  360284  360286  360290  360292  360296  360298  360300  360301  360302  360304  360305  360306  360308  360310  360314  360316  360320  360322  360326  360332  360334  360340  360344  360346  360350  360356  360362  360364  360370  360374  360376  360382  360386  360392  360400  366461 

科目: 来源: 题型:

【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目: 来源: 题型:

【题目】某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图,结合统计图,回答下列问题:

1)本次调查学生共   人,并将条形图补充完整;

2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?

3)学校在每班ABCD四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四张背面完全相同的纸牌的正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后摸出一张,不放回,再摸出一张

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用ABCD表示);

(2)求摸出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线yax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D

(1)求抛物线的解析式;

(2)设点M(1,m),当MB+MD的值最小时,求m的值;

(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以BC为直径的⊙OAB于点DDEAC于点E,且∠AADE

(1)求证:DE是⊙O的切线;

(2)若AD=16,DE=10,求BC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别 A(-3,4)B(-5,2)C(-2,1)

(1)画出 △ABC关于y 轴的对称图形 △A1B1C1

(2)画出将△ABC 绕原点 O逆时针方向旋转90°得到的△A2B2C2

(3)求(2)中线段 OA扫过的图形面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于的一元二次方程 有实数根.

(1)求的取值范围;

(2)若 两个实数根分别为 ,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yax2+bx+c的对称轴是x=﹣1,且过点(,0),有下列结论:abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤abmamb);其中所有错误的结论有(  )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.

(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;

(2)OE的长是否与a值有关,说明你的理由;

(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;

(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作PQMN.设运动的时间为x(s),PQMN与矩形ABCD重叠部分的图形面积为y(cm2

(1)当PQ⊥AB时,x等于多少;

(2)求y关于x的函数解析式,并写出x的取值范围;

(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.

查看答案和解析>>

同步练习册答案